| 研究生: |
楊欣婕 Hsin-chieh Yang |
|---|---|
| 論文名稱: |
離子液體在氯仿中的聚集行為與其在奈米金屬催化劑合成上之應用 Aggregation of Ionic Liquid in Chloroform and Its Application in The Synthesis of Metal Nanoparticles for Use as Catalyst |
| 指導教授: |
劉陵崗
Liu, Ling-Kang 賴重光 Chung-Kung Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 奈米 、離子液體 |
| 外文關鍵詞: | nanoparticles, Ioinc Liquid |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
離子液體是近年來很熱門被頻繁探討的新穎溶劑,廣泛的應用在
各個化學研究領域裡。奈米級金屬粒子在催化上的應用也非常受矚
目。本篇主要在探討離子液體及其特殊的物、化性質,可以溶解過渡
金屬鹽類,並且在金屬源還原成奈米粒子的過程中,保護住奈米金屬
粒子,避免粒子聚集。
我們以照光反應和微波反應合成出一系列奈米金屬粒子。先將離
子液體1-丁基-3-乙基咪唑溴化物(1-butyl-3-ethyl-1H-imidazol-3-ium
bromide, 4-2 Br) 和1-丁基-3-乙基咪唑氯化物
(1-butyl-3-ethyl-1H-imidazol-3-ium chloride, 4-2 Cl) 各自溶於氘化氯
仿中,分別和對應的金屬鹽類溴化鈀 (PdBr2) 和四氯金酸 (HAuCl4)
作用,生成奈米金及奈米鈀粒子。
我們發現離子液體 4-2 Br 與10 %之金屬鹽的氯仿溶液,可以用
來追蹤不同濃度離子液體的聚集團簇行為,利用其中金屬鹽類還原成
奈米金屬粒子來顯色,並表徵在TEM 圖片上面。我們也以螢光團染
料3-羥基色原酮的衍生物
2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA)、
2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) 的發光光譜和激發光譜,得到離子液體在氯仿中聚集行為的證據。
此等離子液體氯仿溶液中所生成的奈米鈀粒子被固定在離子液
體層內,可以用來進行Heck 反應,為離子液體層與有機起始物/生成
物的兩相催化反應系統,在溫和的條件下即可進行。
Abstract
Ionic liquid (IL) is a very popular medium which has been explored
in recent years. It has been widely employed in various research
fields. Nanoscale transition metal catalysts have also attracted increasing
intrests. It has been mainly the study of special physical and chemical
properties of ILs in order to make use of metal ions. Alternatively, ILs
can prevent the metal nanoparticles from aggregation.
Pd-nanoparticles and Au-nanoparticles were synthesized by UV
irradiation or microwave heating of respective metal halide anions PdBr2
and HAuCl4 in CDCl3 solution of 1-butyl-3-ethyl-1H-imidazol-3-ium
bromide ,chloride(4-2Br and 4-2Cl), respectively.
The 4-2 Br IL with 10 mol % metal salt in chloroform ionic liquid
clustering exhibits at increasing concentration of 4-2 Br. After UV or
microwave irradiation, the metal nanoparticles produced could serve as
the contrasting agent on the TEM images, to correlate the concentrations
of IL with the aggregation phenomena of IL. On a separate study,
fluorescent dyes of 3-hydroxy chromone derivatives
2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA) and
2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) have
been used to extract structural information from the luminescence and
excitation spectra, which also reflect the the aggregation of ionic liquid in
chloroform.
The chloroform solution of 4-2 Br and 10% PdBr2 under UV or
microwave irradiation generated the Pd nanoparticles in IL layer of 4-2
Br which also protected the size of Pd nanoparticles from growing too fast. These Pd nanoparticles in IL were used in the Heck reactions.
Initially ionic liquid layer with Pd NPs was added with organic materials
for the two-phase catalytic Heck reactions, which could be carried out
under mild conditions. The combinations of Pd nanoparticles and the IL
conforms to goals of green chemistry in reducing environmental
damages.
參考文獻
1. Hurley, F. H.; Wier, T. P.; J., J. Electrochem. Soc. 1951, 98, 207.
2. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
P. D. Iong. Chem. 1983, 22, 2099.
3. Erbeldinger, M.; Mesiano, A.; Ruessell, A. J. Biotechnol. Prog. 2000,
16,1129.
4. Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A.
M. Anal. Chem. 2001, 73, 3838.
5. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.;
Weizbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001,
135.
6. Armstrong, D. W.; He, L.; Liu, Y.-S., Anal. Chem. 1999, 71, 3873.
7. Wei, G. T.; Yang, Z.; Lee, C. Y.; Yang, H. Y.; Chris Wang, C. R. J.
Am. Chem. Soc. 2004, 126, 5036.
8. Hamaguchi, H.; Hayashi, S. Chem. Lett. 2004, 33, 12.
9. Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
10. Wasserschied, P., Welton, T., Eds.; Ionic Liquids in Synthesis; 2nd Ed.;
Wiley-VCH: Weinheim, 2008.
11. Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001,40, 2379.
12. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13,
2133.
13. Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R. Seddon, K. R. J.
Mater. Chem. 1998, 8, 2627.
14. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
15. Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32.
16. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
17. Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007,
40, 1208.
18. Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665.
19. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997.
20. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo,
K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349.
21. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
J. Am. Chem. Soc. 2005, 127, 3298.
22. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
23. Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun.1999, 25.
24. Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
25. Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem.
2004, 6, 33.
26. Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431.
27. Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. Org. Chem.
2005, 70, 3285.
28. Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, .; Song, J.; Jiang, T. Angew.
Chem. Int. Ed. 2008, 47, 1127.
29. Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun.
2008, 4588.
30. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
31. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem.
1982, 1263
32. Crampton, M. R.; Robotham, I. A. J. Chem. Res. 1997, 22
33. Alder, R. W.; Allen, P. R.; Williams, S. J. J. Chem. Soc. Chem.
Commun. 1995, 1267.
34. Bonhate, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;
Gratzel, M. Inorg. Chem. 1996, 35, 1168.35. Koddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8,
2464.
36. Wulf, A.; Fumino, K.; Michalik, D.; Ludwig, R. ChemPhysChem
2007, 8, 2265.
37. Bagno, A.; Damico, F.; Saielli, G. J. Phys. Chem. B 2006, 46, 100,
23004
38. Bagno, A.; Damico, F.; Saielli, G. ChemPhysChem 2007, 8, 873.
39. Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 31,
110, 9775.
40. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. H.; Watanabe, M. J.
Phys. Chem. B 2005, 109, 6103.
41. Welton, T. Chem. Rev. 1999, 99, 2071.
42. Earle, M. J.; Esperanca, J. M.S.S.; Gilea, M. A.; Lopes, J. N. C.;
Rebelo, L. P.N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature
2006, 439, 831.
43. Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.;
Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Phys. Chem. A 2006, 110,
7303.
44. Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J. Phys. Chem. Chem. Phys. 2007,
9, 982.
45. Santos, L. M. N. B. F.; Lopes, J. N. C.; Coutinho, J. A. P.; Esperancu
a, J. M. S. S.; Gomes, L. R.; Marrucho, I. M.; Rebelo, L. P. N. J. Am.
Chem. Soc. 2007, 129, 284.
46. Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A. J. Am. Chem. Soc.
2007, 129, 3930.
47. Dasilveira Neto, B. A.; Santos, L. S.; Nachtigall, F. M.; Eberlin, M. N.;
Dupont, J. Angew. Chem. Int. Ed. 2006, 45, 43, 7251.
48. Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J. 2006, 12, 6762 .
49. Zana, R. Dynamics of Surfactant Self-Assemblies; CRC Press: Taylor
& Francis, 2005.
50. Klein, M. L.; Shinoda, W. Science 2008, 321, 798.
51. Hess, B.; J. Chem. Theory Comput. 2008, 4, 435.
52. Dyson, P.; Khalaila, I.; Luettgen,S.; McIndce, J.; Zhao, D. Chem.
Commun. 2004, 2204.
53. Dorbritz, S.; Ruth, W.; Kragl, U. Adv. Synth. Catal. 2005, 347,1273.
54. Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T. J.
Phys. Chem. B 2007, 111, 598.55. Motirale, B. G.; Yadav, G. D. Ind. Eng. Chem. Res. 2008, 47, 9081.
56. Wang, M. L.; Huang, T. H. Chem. Eng.Comm. 2007, 194, 618.
57. Dupont, J.; Prechtl, M. H.; Scariot, M.; Scholten, J. D.; Machado, G.;
Teixeira, S. R. Inorg. Chem. 2008, 47, 6427.
58. Rees, G. D.; Robinson, B. H. Adv. Mater. 1993, 5, 608
59. Ishida, Y.; Miyauchi, H.; Sigo, K. Chem. Commun, 2002, 2240.
60. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
P. D. Inorg. Chem. 1983, 22, 2099 .
61. Jaeger, D. A.; Tucker, C. E. Tetrahedron Lett. 1989, 38.
62. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997.
63. Bőhm, V. P.; Herrmann. W. A. J. Organomet. Chem. 1999, 572, 141.
64. Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A.; Afeworki, M. J. Am.
Chem. Soc. 2002, 124, 12932.
65. Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun 2002,
24, 3010.
66. Welton, S. T.; Woolf, J.; Fischer, A. T.; Tetrahedron Lett. 1999, 40,
793.
67. Noto, R.; Anna, F. D.; Marullo, S. J. Org. Chem. 2008, 73, 6224.68. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
69. Yao, Q.; Yang, Z.; Kinney, E. P. J. Org. Chem. 2003, 68, 7528.
70. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;
Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
71. Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett.
2003, 5, 10.
72. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
73. Heck, R. F. J. Org. Chem. 1972, 37, 14
74. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997
75. Djakovitchm L.;Koehler, K. J. Am. Chem. Soc. 2001, 123, 5990.
76. Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg. Chem. 2001, 1131.
77. Blum, J.; Hamza, K.; Abu-Reziq, R.; Avnir, D. Org. Lett. 2004, 6, 6,
925.
78. Hirao, T.; Tsukuda, T.; Sakurai, H. J. Org. Chem. 2002, 67, 2721.
79. Mi, Z.; Liu, G.; Wang, L.; Zhang, X. Ind. Eng. Chem. Res. 2005, 44,
3846.
80. Rao, C. N. R.; Kulkarni, G. U.; Thomasa, P. J.; Edwards, P. P. Chem.
Soc. Rev. 2000, 29, 27.
81. De Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.
Henderickx, H. J. W.; De Vries, J. G. Org. Lett. 2003, 5, 3285.
82. Nanda, K. K.; Maisels, A.; Kruis, F. E.; Fissan, H.; Stappert, S. Phys.
Rev. Lett. 2003, 9, 106102.
83. Price, K. E.; Mason, B. P.; Bogdan, A. R.; Broadwater, S. J.;
Steinbacher, J. L.; McQuade, D. T. J. Am. Chem. Soc. 2006,
128,10376.
84. Mu, X.-D.; Meng, J.-Q.; Li, Z.-C.; Kou, Y. J. Am. Chem. Soc. 2005,
127, 9694.
85. Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am.
Chem. Soc. 2006, 128, 8714.
86. Schwartz, J.; Bohm, V. P. W.; Gardiner, M. G.; Grosche, M.;
Hermann, W. A.; Hieringer, W.; Raudaschl-Sieter, G. Chem.Eur. J.
2000, 6, 1773.
87. Byun, J.-W.; Lee, Y.-S Tetrahedron Lett. 2004, 45, 1837.
88. Altava, B.; Burguete, M.; Garcia-Verdugo, E.; Karbass, N.; Luis, S.
V.; Puzary, A.; Sans, V. Tetrahedron Lett. 2006, 47, 2311.
89. Nikhil, R. J.; Wang, Z. L.; Tarasankar, P. Langmuir. 2000, 16, 2457.
90. David, E. C.; Francis, P. Z.; Stephen, M. G.; Royce, W. M. Langmuir 2000, 16, 9699.
91. Chanel, K. Y.; Rainer, J.; Abraham, U.; Henry, W.; Alexander, K.;
Miriam, R.; Jonathan, S. Langmuir 1999, 15, 3486.
92. Daniela, T.; Orietta, M.; Andrea, C.; Claudio,B.; Francesco, V.;
Simonetta, M.; Saverio, R. Macromolecules 2003, 36, 4294.
93. Joaquin, C.; Robert, W. J. S.; Richard, M. C. J. Am. Chem. Soc. 2003,
125, 11190.
94. Francis, P. Z.; Stephen, M. G.; Royce, W. M.; Langmuir 2001, 17,
481.
95. Tetsu, Y.; Kuniko, I.; Nobuo, K. Langmuir 2001, 17, 4701.
96. Wang, C. C.; Chen, D. H.; Huang, T. C. Colloids and Surface A:
Physicochemical and Engineering Aspects 2001, 189, 145.
97. Srikant, P.; Marcia, T. G.; Raymond, C. K.; Karine, M.; Surya, P. G.
K.; George, A. O.; Mark, E. T. Chem. Mater. 2000, 12, 1985.
98. Kensuke, N.; Hideaki, I.; Yoshiki, C. Nano Lett. 2002, 2, 1183.
99. Teranishi,T.; Miyake, M. Chem. Mater. 1998, 10, 594.
100. Kiyoharu, T.; Yoshinori, F.; Yoshitsugu, H.; Takeji, H.; Langmuir
1999, 15, 5200.
101. Marcos, A. G.; Alexandre, P. U.; Giovanna, M.; Ricardo, R. B. C.; Wictor, C. M.; Jonder, M.; Gunter, E.; Jairton, D.; J. Am. Chem. Soc.
2005, 127, 4588.
102. Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H. Chem. Mater. 2000,
12, 3006.
103. Dhas, N. A.; Cohen, H.; Gedanken, A. J. Phys. Chem. B 1997, 101,
6834.
104. Bera, D.; Kuiry, S. C.; Patil, S.; Seal, S. Appl. Phys. Lett. 2003, 82,
3089.
105. Bera, D.; Kuiry, S. C.; Seal, S. J. Phys. Chem. B 2004, 108, 556.
106. Aymonier, C.; Bortzmeyer, D.; Thomann, R.; lhaupt, R. M. Chem.
Mater. 2003, 15, 4874.
107. Pei-Feng H. and Kai-Ming C. Nanotechnology 2004, 15, 1059.
108. Sudeshna, S.; Dipankar, S.; Piyali, D.; Rima, L.; Amitabha, S.
Tetrahedron 2009, 65, 4367
109. Zhang, G.; Zhou, H.; Hu, J.; Liu, M.; Kuang, Y. Green Chem., 2009,
11, 1428
110. Katayama, Y.; Bando, Y.; Miura, T. Transactions of the Institute of
Metal Finishing 2008, 86, 4, 205-210.
111. Zhong, C. M.; Zuo, Y. J.; Jin, H. S.; Wang, T. C.; Liu, S. Q. Acta Cryst. 2006, E62, m2281-m2283.
112. Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. J. Phy.
Chem. B 2005, 109, 14445-14448.
113. Ren, L.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P. J. Colloid Interface Sci.
2008, 323, 260-266.
114. Sebnem, E.; Andrey, S. K.; Alexander P. D. Anal. Chimi. Acta.
2002 , 464, 273
115. Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19, 1123
116. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.;
Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349
117. Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.;
Scopelliti, R.; Chiappe, C.; Dyson, P. J. Organometallics 2007, 26,
1588
118. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
Am. Soc. Chem. Soc. 2005, 3298