| 研究生: |
宋秉儒 Bing-Zu Song |
|---|---|
| 論文名稱: |
模擬電動車鋰離子電池模組佈置的熱流特性 The Simulation of Thermofluid Characteristics in the Layout of Li-ion Battery Module for Electric Vehicle |
| 指導教授: |
吳俊諆
Jiunn-Chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 數值模擬 、電動車 、鋰離子電池 、電化學模型 、熱傳 |
| 外文關鍵詞: | Heat transfer, Lithium-ion battery, Numerical simulation, Electrochemical model, Electric vehicle |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用FLUENT 軟體進行電動車鋰離子電池模組的三維熱流分析,目的在建立一合理的電池模組的熱管理模型來預測電池模組的熱流性能。分析類型共有三種電池模組(簡化型、圓柱形及長條形電池芯的完整模組),建立簡化型電池模組目的為驗證紊流模型及電化學模型。另外,完整電池模組採用圓柱形或長條形鋰離子電池,以交錯方
式排列於模組內部形成散熱之流道,並比較兩種電池類型對於模組散熱效率之影響。
本文先應用三種紊流模型進行模擬並和模組的入/出口壓差量測值做比較,預測顯示RNG k-ε模式較準確,數值解與實驗壓差的最大誤差值僅8%。接著以不同入口風速之情況進行電池溫度之驗證,模擬顯示與實驗溫差最大約1oC。最後探討圓柱形及長條形電池模組流場及溫度場之特性。整體而言,圓柱形電池模組的流場為非對稱分佈。當入口速度增加到2 m/s 時,圓柱形電池模組內流體通過第2 排電池後,流向會往左上偏移,同時也改變接觸點及分離點之角度。相對來講,長條形電池模組流場較平順且阻風面積較小,它的散熱效率較圓柱形電池模組佳。
This paper presents the 3-D numerical simulation of electric vehicle lithium-ion battery module by using computational software FLUENT. The purpose is to develop a reasonable thermal management model for prediction of thermal flow performance of battery module. Three simulation cases are conducted (simplified type, cylindrical and strip cell layout of a complete battery module), and the simplified battery module is designed for validating turbulence model and electrochemical model. In additional, the complete battery module consists of either cylindrical and strip Li-ion cell, and arranged in a staggered layout to yield cooling flow channel. Comparison of heat dissipation of battery module between these two
cells is also made.
Three turbulence models are simulated and compared with experimental pressure difference between inlet and exit of battery module, and prediction shows that RNG k-ε model has better accuracy with maximum error of pressure difference 8%. Then, the inlet velocity into the battery module is changed to validate the computed and experimental temperature, and agreement of both results is good within 1oC. Finally, the numerical result shows the flow and temperature pattern characteristics between the cylindrical and strip type of battery module. Overall, the flow inside the cylindrical cell of batter module is unsymmetrical. When the inlet velocity increases to 2 m/s, the flow direction of cylinder shape battery module divert
to upper left after flow passes through the second row of battery, and this also change the contact point and separation point. On the other hand, the strip type of battery module generates relatively smooth and smaller flow resistance, so it has better dissipation efficiency than that of the cylinder battery module.
ANSYS, (2009) ANSYS FLUENT user’s guide, ANSYS, Inc.
Bernardi, E., Pawlikowski, Newman, J., (1985) A general energy balance for battery systems,
Electrochem. Soc., 132(1):5-12.
Chen, Y., Evans, J. W., (1993) Heat transfer phenomena in lithium/polymer electrolyte
batteries for electric vehicle application, J. Electrochem. Soc., 140(7):1833-1838.
Chen, M., Gabriel, A., Rincon-Mora, (2006) Accurate electrical battery model capable of
predicting runtime and I–V performance, IEEE Trans. Energy Convers., 21(2):504-511.
Dhameja, S., (2002) Electric Vehicle Battery Systems, Elsevier.
Gao, L., Liu S., (2002) Dynamic lithium-ion battery model for system simulation, IEEE Trans.
Compon. Package. Technol., 25(3):495-505.
Guoa, G., Longb, B., Chengc, B., Zhoua, S., Xua, P., Caoa, B., (2010) Three-dimensional
thermal finite element modeling of lithium-ion battery in thermal abuse application, J.
Power Sources, 195:2393-2398.
Hallaj, S. A., Maleki, H., Hong, J. S., Selman, J. R., (1999) Thermal modeling and design
considerations of lithium-ion batteries, J. Power Sources, 83:1-8.
Hallaj, S. A., Prakash, J., Selman, J. R., (2000) Characterization of commercial Li-ion
batteries using electrochemical calorimetric measurements, J. Power Sources,
87:186-194.
Hong, J. S., Maleki, H., Hallaj, S. A., Redey, L., Selman, J. R., (1998) Electrochemical
calorimetric studies of lithium-ion cells, J. Electrochem. Soc., 145(5):1489-1501.
Incropera, F. P., Dewitt, D. P., (2001) Fundamentals of Heat and Mass Transfer, John Wiley &
Sons, New York.
Kim, S. E., Choudhury, D., (1995) A near-wall treatment using wall functions sensitized to
86
pressure gradient, ASME FED, 217, Separated and Complex Flows.
Launder, B. E., Spalding, D. B., (1972) Lectures in Mathematical Models of Turbulence,
Academic Press.
MOLICEL 技術文件,2009,IMR18650E,產品數據表。
Michael, A. R., Sauer, D. U., (2011) Dynamic electric behavior and open circuit voltage
modeling of LiFePO4 based lithium ion secondary batteries, J. Power Sources,
196:331-336.
Mills, A., Hallaj, S. A., (2005) Simulation of passive thermal management system for lithium
ion battery packs, J. Power Sources 141:307-315.
Nalin, A. C., Reinhardt, K., Jake, C., Jasim, A., Alelsandar, K., (2010) Algorithms for
advanced battery management systems, IEEE Control Systems Magazine, 30(3):50-68.
Onda, K., Kameyama, H., Hanamoto, T., Ito, K., (2003) Experimental study on heat
generation behavior of small lithium ion secondary batteries, J. Electrochemical Society,
150(3): A285-A291.
Onda, K., Ohshima, T., Nakayama, M., Fukuda, K., Araki, T., (2006) Thermal behavior of
small lithium-ion battery during rapid charge and discharge cycles, J. Power Sources,
158:535-542
Pesaran, A. A., Vlahinos, A., Burch, S. D., (1997) Thermal performance of EV and HEV
battery modules and packs, 14th Electric Vehicle Symposium.
Shih, T. H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., (1995) A new k-ε eddy-viscosity
model for high Reynolds number turbulent flows - model development and validation,
Computers and Fluids, 24(3):227-238.
Stanescu, G., Fowler, A. J., Bejan, A., (1996) The optimal spacing of cylinders in free-stream
cross-flow forced convection, Inter. J. Heat Mass Transfer, 39(2):311-317.
Wolfstein, M., (1969) The velocity and temperature distribution of one-dimensional flow with
turbulence augmentation and pressure gradient, Int. J. Heat Mass Transfer, 12:301-318.
87
Yakhot, V., Orszag, S. A., (1986) Renormalization group analysis of turbulence: I. basic
theory, J. Scientific Computing, 1(1):1-51.
Zukauskas, A., (1989) High-Performance Single-Phase Heat Exchangers, Hemisphere Pub.
林國禎,(2009) 純電動車電池組散熱研究,機械工業雜誌,320 期,42-52 頁。
吳俊諆、楊建裕,(2010) 電池模組熱流分析,新普科技公司委託研究計畫結案報告。
洪裕桓,(2005) 智慧型鋰電池管理系統之研製,國立中山大學電機工程學系碩士論文。
陳欣志,(2004) 鋰電池熱現象之模擬,國立清華大學化學工程研究所博士論文。