| 研究生: |
劉漢鈞 Han-Chun Liu |
|---|---|
| 論文名稱: |
氮化銦奈米柱之光學性質研究 Optical characteristics of InN nanorods |
| 指導教授: |
徐子民
Tu-Min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 光激發螢光光譜 、聲子侷限效應 、量子侷限效應 、拉曼光譜 、氮化銦 、一維奈米結構 、奈米柱 |
| 外文關鍵詞: | phonon confinement, quantum confinement, PL, raman, nanostructure, InN, nanorods |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用拉曼光譜和光激發螢光光譜來分析探討氮化銦奈米柱的基本光學性質。
我們從室溫拉曼光譜發現氮化銦奈米柱的A1(LO)模態和E2(high) 模態能量位置跟氮化銦薄膜的差不多,而且隨著奈米柱直徑越小,拉曼光譜譜形會越不對稱,這是因為聲子侷限效應所造成的,再由聲子侷限效應模型去擬合拉曼光譜決定出奈米柱的直徑大小,發現和由SEM影像圖估計出來的直徑大小幾乎相符,最後再從峰值的能量位置,半高寬變化觀察奈米柱直徑的大小對拉曼光譜的影響。
而氮化銦奈米柱的低溫光激發螢光光譜峰值會隨著直徑的越小而往高能量偏移,經過理論計算證實是因為量子侷限效應的影響而產生的。
We present results of Raman spectra and PL spectra to analyze the optical properties of InN nanorods.
We find that the raman peak energy of InN nanorods is almost the same as InN thin film, and when the diameter of InN nanorods decrease, raman spectra will asymmetric, this is phonon confinement effect, and we use this model to fit our raman spectra, try to fit the diameter of InN nanorods.
Finally, we find that the PL peak energy of InN nanorods will blue shift by decreasing the diameter of InN nanorods, this is quantum confinement effect.
1.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayashi, J. Appl. Phys. 77(2), 447(1995)
2.Jiangtao Hu, Teri Wang Odom, and Charles M. Lieber, Acc. Chem. Res. 32, 435(1999)
3.Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charles M. Liber, Nature, 409, 66(2001)
4.Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang, Science, 292, 1897(2001)
5.Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber , Science, 293, 1289(2001)
6.S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965(2000)
7.Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, J. Appl. Phys. 94, 2779(2003)
8.N. Fukata, T. Oshima, K. Murakami, T. Kizuka, T. Tsurui, and S. Ito, Appl. Phys. Lett. 86, 213112(2005)
9.Sang-Woo Kim, Shizuo Fujita, and Shigeo Fuhita, Appl. Phys. Lett. 86, 153119(2005)
10.Jun Zhang, Lide Zhang, Xinsheng Peng, and Xiangfeng Wang, J. Mater. Chem,
12, 802(2002)
11.Long-Wei Yin, Yoshio Bando, Ying-Chun Zhu, Dmitri Golberg, and Mu-Sen Li, Appl. Phys. Lett. 84, 1546(2004)
12.C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22(2002)
13.M.C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, Appl. Phys. Lett. 85, 5670(2004)
14.A. Singha, P. Dhar, and Anushree Roy, Am. J. Phys. 73(3), 224(2005)
15.H. Richter, Z. P. Wang, and L. Ley, Solid Satae Commun. 39, 625(1981)
16.I. H. Campbell, and P. M. Fauchet, Solid State Commun. 58, 739(1986)
17.Y. Gu, Igor L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Appl. Phys. Lett. 85, 3833(2004)
18.M. W. Lee, H. C. Hsueh, H.-M. Lin, and C.-C. Chen, Phys. Rev. B 67, 161309(2003)
19.G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann, C. Thomsen, D. J. As, A. P. Lima, D. Schikora, K. Lischka, R. Averbeck, and H. Riechert, Appl. Phys. Lett. 76, 2122(2000)
20.V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. V. Smirnov, and T. Inushima, Appl. Phys. Lett. 75, 3297(1999)
21.S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765(2004)
22.J. W. Chen, Y. F. Chen, H, Lu, and W. J. Schaff, Appl. Phys. Lett. 87, 041907(2005)
23.E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, and K. Kisoda, Appl. Phys. Lett. 84, 212(2004)
24.V. M. Naik, R. Naik, D. B. Haddad, J. S. Thakur, G. W. Auner, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 86, 201913(2005)
25.Hyuk-Joo Kwon, Yong-Hyun Lee, Osamu Miki, Hirofumi Yamano, and Akira Yoshida, Appl. Phys. Lett. 69(7), 937(1996)
26.S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee, S. Hofmann, and J. Robertson, Phys. Rev. B 68, 241312(2003)
27.A. Li Bassi, D. Cattaneo, V. Russo, C. E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F. O. Ernst, K. Wegner, and S. E. Pratsinis, J. Appl. Phys. 98, 074305(2005)
28.M. Rajalakshmi, Akhilesh K. Arora, B. S. Bensre, and Shailaja Mahamuni, J. Appl. Phys. 87, 2445(2000)
29.C. L. Cheng, Y. F. Chen, R. S. Chen, and Y. S. Huang, Appl. Phys. Lett. 86, 103104(2005)
30.Wenzhong Wang, Congkang Xu, Guanghou Wang, Yingkai Lin, and Changlin Zheng, J. Appl. Phys. 92, 2740(2002)
31.Claudia Bungaro, Krzysztof Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720(2000)
32.V. Yu. Davydov, A. A. Klochikhin, M. B. Smirnov, V. V. Emtsev, V. D. Petrikov, I. A. Abroysn, A. I. Titov, I. N. Goncharuk, A. N. Smirnov, V. V. Mamutin, S. V. Ivanov, and T. Inushima, Phys. Stat. Sol (b) 216, 779(1999)
33.C. A. Arguello, D. L. Rousseau, and S. P. Porto, Phys. Rev. 181, 1351(1969)
34.F. Demangeot, J. Grandon, C. Pinquier, and M. Caumont, Phys. Rev. B 68,
245308(2003)
35.J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, Appl. Phys. Lett. 80,
3967(2002)
36.B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, and B. Monemar, Phys. Rev. B 69, 115216(2004)
37.Takashi Matsuoka, Hiroshi Okamoto, Masashi Nakao, Hiroshi Harima, and Eiji Kurimoto, Appl. Phys. Lett. 81, 1246(2002)
38.J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, Hai Lu, William J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett. 84, 2805(2004)
39.J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, Phys. Rev. B 66, 201403(2001)