| 研究生: |
李詩淳 Shih-Chun Li |
|---|---|
| 論文名稱: | An application of Bezout's theorem: the effective minimal intersection number of a plane curve |
| 指導教授: |
陳正傑
Jheng-Jie Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 仿射平面曲線 、交點數 、Bezout定理 、近似根 |
| 外文關鍵詞: | Embedding line, Bezout's Theorem, intersection number, approximate roots, algebraic curve |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇碩士論文要是研究仿射平面曲線的交點數。事實上,我們將張海潮教授和王立中教授在[CW]的論述中,歸納並得出以下我們的主要定理:
「如果曲線F(1,y,z)在無窮遠處只有一個place,則我們可以建構出與曲線F(1,y,z)相交的曲線G_j,使得它們在所有曲線上達到最小的正交點數。」
這是應用到Bezout定理,以及在[Moh1, Moh2, Moh3, Moh4]介紹的近似根概念。此外,我們可以將Embedding Line Theorem作為一個應用並加以證明。(請參閱第八章)
In this thesis, we study the intersection number of affine plane curves.
Actually, we generalize the argument of Chang and Wang in [CW] to obtain our main theorem as follows:
“if the curve $F(1,y,z)$ has only one place at infinity, then we would construct a curve G_j which intersects curve F(1,y,z) attaining the positive minimal intersection number among all curves."
This is an application of Bezout's Theorem and the approximate roots introduced by [Moh1, Moh2, Moh3, Moh4].
Besides, we can reprove the Embedding Line Theorem as an application (see section 8).
Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II;
Embeddings of the line in the plane;
Lectures on expansion techniques in algebraic geometry;
On equisingularity, analytical irreducibility and embedding line theorem;
An Intersection Theoretical Proof of the Embedding Line Theorem;
Algebraic Curves : An introduction to Algebraic Geometry;
Algebraic Geometry;
On Abhyankar-Moh's epimorphism theorem:
Embeddings of the plane;
Commutative Ring Theory;
Curves on Rational and Irrational Surfaces;
On the concept of approximate roots for algebra;
On characteristic pairs of algebroid plane curves for characteristic p;
On two fundamental theorems for the concept of approximate roots;
Algebra 3rd ed.;
An Algebraic Introduction to Complex Projective Geometry : Commutative Algebra;
Algebraic Curves;
Le problème des modules pour les branches planes;
Commutative Algebra