跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈則方
Ze-Fang Shen
論文名稱: 固態氧化物燃料電池金屬連接板與硬銲接合件熱機疲勞性質
Thermo-Mechanical Fatigue Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell
指導教授: 林志光
Chih-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 85
中文關鍵詞: 固態氧化物燃料電池金屬支撐硬銲封裝金屬連接板熱機疲勞
外文關鍵詞: Thermo-mechanical property
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探討固態氧化物燃料電池在使用條件下,其硬銲封裝填料與金屬連接板接合件的熱機疲勞性質與破裂模式,所使用之封裝填料為核能研究所所開發的銀基合金,金屬連接板使用型號為Crofer 22 H的商用肥粒鐵系不銹鋼。藉由對接合件施加不同組合的張、剪力週期性負載,進行室溫至750 °C熱循環的異相熱機疲勞實驗,並討論1000小時熱時效處理的影響。
    研究結果顯示未時效及熱時效處理接合件的熱機疲勞壽命會隨著在室溫或高溫區段所施加的端應力增加而下降,顯示兩者皆為影響壽命的重要因素,且在高溫區段施加的應力影響較為顯著。另外與先前研究接合件在750 °C下的潛變壽命比較,試片在745-750 °C頂溫區段的累積時間較短,顯示熱機疲勞效應確實存在於未時效及熱時效處理二種接合件。
    在接觸空氣及高溫的環境下,AgCrO2鉻酸銀會在銲料層及Cr2O3層之間隨熱時效處理及熱機疲勞試驗時間增長生成。在相同的端應力比條件下,大部分經熱時效處理試片的壽命會較未經時效處理試片長,推測AgCrO2能提升接合件阻擋裂縫成長的能力,乃是在裂縫產生架橋及尖端鈍化效應所致,導致時效試片有較長的壽命。
    根據破斷面分析,未時效張力試片皆破裂在銲料層與Cr2O3層之間,時效張力試片則是破裂在Crofer 22 H側的再生銲料層與Cr2O3層之間,部分會破裂於AgCrO2層與銲料層之間;對於剪力模式,中短壽命的未時效試片破斷位置亦發生在銲料層與Cr2O3層之間,而隨著AgCrO2的增長,長壽命試片的破斷面會轉往AgCrO2層及銲料層之間,時效剪力試片破斷位置大多位於AgCrO2層及銲料層之間。


    The purpose of this study was to investigate thermo-mechanical fatigue (TMF) properties and fracture mode of a joint between braze sealant and metallic interconnect in solid oxide fuel cell. The materials used were a silver-based braze sealant developed at the Institute of Nuclear Energy Research and a commercial ferrite stainless steel (Crofer 22 H) for interconnect. Out-of-phase TMF tests under various combinations of cyclic mechanical loadings were conducted in tensile and shear modes at a cyclic temperature range of room temperature (RT) to 750 °C. The effects of 1000-h thermal aging were also investigated.
    Experimental results indicated that the TMF life was increased with a decrease in applied end stresses at RT and at high temperature, for both unaged and thermally aged joint specimens. Both end stresses applied at RT and 750 °C played an important role in the TMF life which was more sensitive to the stress applied at high temperature. In addition, compared to the estimated creep rupture time, the accumulated time at 745-750 °C was much shorter, indicating the existence of a true TMF mechanism for both unaged and aged joints.
    AgCrO2 at the interface between braze sealant and Cr2O3 layer was formed during thermal aging at high temperature in air. The thermally aged joint specimens generally exhibited longer TMF lives than the unaged ones, given a combination of applied end stress ratios at RT and 750 °C. It was attributed to that the ability to resist cracking was enhanced by the existence of AgCrO2. The formation of AgCrO2 induced a bridging effect on the crack path and a blunting effect at the crack tip. It was beneficial to the increase of TMF life.
    For tensile loading mode, the fracture sites of the unaged specimens were only found at the interface between Cr2O3 layer and braze sealant. For the thermally aged specimens, cracks mainly propagated along the interface of Cr2O3/reformed braze sealant and occasionally along the interface of AgCrO2/braze sealant. As for shear loading mode, the interface between Cr2O3 and braze sealant also acted as the main fracture site for unaged joints with short and medium TMF lives. Additional cracking path at the interface between AgCrO2 and braze sealant was also observed for a longer TMF life. For the aged ones, cracks tended to propagate along the interface of AgCrO2/braze sealant and partly within Cr2O3 layer.

    ABSTRACT-I ACKNOWLEDGEMENTS-IV TABLE OF CONTENTS-V LIST OF TABLES-VI LIST OF FIGURES-VIII 1. INTRODUCTION-1 1.1. Solid Oxide Fuel Cell-1 1.2. Braze Sealant-5 1.3. Joint of Braze Sealant and Metallic Interconnect-6 1.4. Thermo-Mechanical Fatigue-8 1.5. Purpose-9 2. MATERIALS AND EXPERIMENTAL PROCEDURES-11 2.1. Materials and Specimen Preparation-11 2.2. Thermo-Mechanical Fatigue Test-14 2.3. Fractography and Microstructural Analysis-17 3. RESULTS AND DISCUSSION-18 3.1. Thermo-Mechanical Fatigue of Unaged Joints-19 3.1.1. Thermo-mechanical fatigue life-19 3.1.2. Failure analysis-24 3.2. Thermo-Mechanical Fatigue of Aged Joints-38 3.2.1. Thermo-mechanical fatigue life-38 3.2.2. Failure analysis-42 3.3. Comparison of Unaged and Aged Joints-58 4. CONCLUSIONS-64 REFERENCES-66

    1. P. A. Owusu and S. Asumadu-Sarkodie, ”A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation,” Cogent Engineering, Vol. 3, 1167990, 2016.
    2. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, pp. 85-160, 2016.
    3. B. Timurkutluk, C. Timurkutluk, M. D. Mat, and Y. Kaplan. ”A Review on Cell/Stack Designs for High Performance Solid Oxide Fuel Cells,” Renewable and Sustainable Energy Reviews, Vol. 56, pp. 1101-1121, 2016.
    4. M. Singh, D. Zappa, and E. Comini, ”Solid Oxide Fuel Cell: Decade of Progress, Future
    Perspectives and Challenges,” International Journal of Hydrogen Energy, Vol. 46, pp. 27643-27674, 2021.
    5. M. E. Chelmehsara and J. Mahmoudimehr, ”Techno-Economic Comparison of Anode-Supported, Cathode-Supported, and Electrolyte-Supported SOFCs,” International Journal of Hydrogen Energy, Vol. 43, pp. 15521-15530, 2018.
    6. M. C. Tucker, ”Progress in Metal-Supported Solid Oxide Fuel Cells: A Review,” Journal of Power Sources, Vol. 195, pp. 4570-4582, 2010.
    7. P. Satardekar, Materials Development for the Fabrication of Metal Supported-Solid Oxide Fuel Cells by Co-sintering, Ph. D. Thesis, University of Trento, Trento, Italy, 2014.
    8. K. S. Chung, Fabrication and Characterization of Metal-support for Solid Oxide Fuel Cells (MSOFCs), M.S. Thesis, University of Waterloo, Ontario, Canada, 2016.
    9. S. P. Simner and J. W. Stevenson, ”Compressive Mica Seals for SOFC Applications,” Journal of Power Sources, Vol. 102, pp. 310-316, 2001.
    10. Y.-S. Chou, J. W. Stevenson, and L. A. Chick, ”Ultra-Low Leak Rate of Hybrid Compressive Mica Seals for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 112, pp. 130-136, 2002.
    11. Y.-S. Chou and J. W. Stevenson, ”Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness, ” Journal of Power Sources, Vol. 124, pp. 473-478, 2003.

    12. Y.-S. Chou and J.W. Stevenson, ”Long-Term Ageing and Materials Degradation of Hybrid Mica Compressive Seals for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 191, pp. 384–389, 2009.
    13. J. Duquette and A. Petric, ”Silver Wire Seal Design for Planar Solid Oxide Fuel Cell Stack,” Journal of Power Source, Vol. 137, pp. 71-75, 2004.
    14. Q. Zhang, K. Xie, Y. Luo, Y.-C. Zhang, and W.-C. Jiang, ”Mismatch Effect of Material Creep Strength on Creep Damage and Failure Pobability of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 47, pp. 2673-2684, 2022.
    15. F. Smeacetto, M. Salvo, M. Santarelli, P. Leone, G.A. Ortigoza-Villalba, A. Lanzini,
    L.C. Ajitdoss, and M. Ferraris, ”Performance of a Glass-Ceramic Sealant in an SOFC Short Stack,” International Journal of Hydrogen Energy, Vol. 38, pp. 588-596, 2013.
    16. R. Kiebach, K. Agersted, P. Zielke, I. Ritucci, M. Brock, and P. V Hendriksen, ”A Novel SOFC/SOEC Sealing Glass with a Low SiO2 Content and a High Thermal Expansion Coefficient,” ECS Transactions, Vol. 78, pp. 1739-1747, 2017.
    17. S. Rodríguez-López, V.A.C. Haanappel, A. Durán, F. Muñoz, G.C. Mather, M.J. Pascual, and S.M. Gross-Barsnick, ”Glass-Ceramic Seals in the System MgO-BaO-B2O3-SiO2 Operating under Simulated SOFC Conditions,” International Journal of Hydrogen Energy, Vol. 41, pp. 15335-15345, 2016.
    18. S.-F. Wang, Y.-F. Hsu, C.-S. Cheng, and Y.-C. Hsieh, ”SiO2-Al2O3-Y2O3-ZnO Glass Sealants for Intermediate Temperature Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 38, pp. 14779-14790, 2013.
    19. L. Peng, Q.-S. Zhu, Z.-H. Xie, and P. Wang, ”Interface Reactions between Sealing Glass and Metal Interconnect under Static and Dynamic Heat Treatment Conditions,” Journal of Electrochemical Energy Conversation and Storage, Vol. 12, 061009, 2015.
    20. W.-C. Jiang, Y.-C. Zhang, W. Woo, and S. T. Tu, ”Three-Dimensional Simulation to Study the Influence of Foil Thickness on Residual Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 209, pp. 65-71, 2012.
    21. L.-W. Huang, Y.-Y. Wu, and R.-K. Shiue, ”The Effect of Oxygen Pressure in Active Brazing 8YSZ and Crofer 22H Alloy,” Journal of Materials Research and Technology, Vol. 10, pp. 1382-1388, 2021.

    22. B. Kuhna, F. J. Wetzel, J. Malzbender, R. W. Steinbrech, and L. Singheiser, ” Mechanical Performance of Reactive-Air-Brazed (RAB) Ceramic/Metal Joints for Solid Oxide Fuel Cells at Ambient Temperature,” Journal of Power Sources,Vol. 193, pp. 199-202, 2009.
    23. X.-Q. Si, J. Cao, X.-G. S, Z.-J Wang, Z.-Q. Wang, and J.-C Feng, ”Evolution Behavior of Al2O3 Nanoparticles Reinforcements During Reactive Air Brazing and Its Role in Improving the Joint Strength,” Materials and Design, Vol. 132, pp. 96-104, 2017.
    24. W.-Q. Zhao, S.-Y. Zhang, J. Yang, T.-S. Lin, D. P. Sekulic, and P. He, ”Wetting and Brazing of YIG Ceramics using Ag-CuO-TiO2 Metal Filler,” Journal of Materials Research and Technology, Vol. 10, pp. 1158-1168, 2021.
    25. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, K. Norrman, C. Chatzichristodoulou, and P. V. Hendriksen. ”An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
    26. X.-Q. Si, J. Cao, B. Talic, I. Ritucci, C. Li, J.-L. Qi, J.-C. Feng, and R. Kiebach, ”A Novel Ag Based Sealant for Solid Oxide Cells with a Fully Tunable Thermal Expansion,” Journal of Alloys and Compounds, Vol. 831, 154608, 2020.
    27. J.-Y. Kim, J. S. Hardy, and K. S. Weil, ”Effects of CuO Content on the Wetting Behavior and Mechanical Properties of a Ag-CuO Braze for Ceramic Joining,” Journal of the American Ceramic Society, Vol. 88, pp. 2521-2527, 2005.
    28. S.-R. Le, Z.-M. Shen, X.-D. Zhu, X.-L. Zhou, Y. Yan, K.-N. Sun, N.-Q. Zhang, Y.-X. Yuan, and Y.-C. Mao, ”Effective Ag-CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
    29. J.-Y. Kim, J. S. Hardy, and S. Weil, ”Dual-atmosphere Tolerance of Ag-CuO-based Air Braze,” International Journal of Hydrogen Energy, Vol. 32, pp. 3655-3663, 2006.
    30. J.-Y. Kim, J. S. Hardy, and K. S. Weil, ”Silver-copper Oxide Based Reactive Air Braze for Joining Yttria-stabilized Zirconia,” Journal of Materials Research and Technology, Vol. 20, pp. 636-643, 2005.
    31. X.-Q. Si, J. Cao, I. Ritucci, B. Talic, J.-C. Feng, and R. Kiebach, ”Enhancing the Long-term Stability of Ag Based Seals for Solid Oxide Fuel/electrolysis Applications by Simple Interconnect Aluminization,” International Journal of Hydrogen Energy, Vol. 44, pp. 3063-3074, 2019.

    32. K. S. Weil, C. A. Coyle, J. T. Darsell, G. G. Xia, and J. S. Hardy, ”Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-copper Oxide Air-brazed Seals,” Journal of Power Sources, Vol. 152, pp. 97-104, 2005.
    33. J.-Y. Kim, M. Engelhard, J.-P. Choi, and K. S. Weil, ”Effects of Atmospheres on Bonding Characteristics of Silver and Alumina,” International Journal of Hydrogen Energy, Vol. 33, pp. 4001-4011, 2008.
    34. Z.-B. Shao, K.-R. Liu, and L.-Q. Liu, ”Equilibrium Phase Diagrams in the Systems PbO-Ag and CuO-Ag,” Journal of the American Ceramic Society, Vol. 76, pp. 2663-2664, 1993.
    35. W.-Q. Zhao, S.-Y. Zhang, J. Yang, T.-S. Lin, D. P. Sekulic, and P. He, ”Wetting and Brazing of YIG Ceramics using Ag-CuO-TiO2 Metal Filler,” Journal of Materials Research and Technology, Vol. 10, pp. 1158-1168, 2021.
    36. X.-Q. Si, C. Li, Y.-F. Bo, J.-L. Qi, J.-C. Feng, and J. Cao, ”The Role of Al Diffusion Behavior in the Process of Forming a Super-reliable Al2O3 Protective Layer During Reactive Air Aluminization,” Applied Surface Science, Vol. 518, 146242, 2020.
    37. J.-Y. Kim, J. S. Hardy, and K. S. Weil, ”High-temperature Tolerance of the Silver-copper Oxide Braze in Reducing and Oxidizing Atmospheres,” Journal of Materials Research and Technology, Vol. 21, pp. 1434-1442, 2006.
    38. C.-K. Lin, K.-Y. Chen, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, ”Mechanical Durability of Solid Oxide Fuel Cell Glass-ceramic Sealant/Steel Interconnect Joint under Thermo-mechanical Cycling,” Renewable Energy, Vol. 138, pp. 1205-1213, 2019.
    39. Wikipedia, Thermo-mechanical Fatigue, https://en.wikipedia.org/wiki/Thermo-mechanical_fatigue, accessed on Feburary 25, 2022.
    40. A. Atkinson and B. Sun, ”Residual Stress and Thermal Cycling of Planar Solid Oxide Fuel Cells,” Materials Science and Technology, Vol. 23, pp. 1135-1143, 2007.
    41. F. Smeacetto, A. Chrysanthou, M. Salvo, T. Moskalewicz, F. D. Bytner, L. C. Ajitdoss, and M. Ferraris, ”Thermal Cycling and Ageing of a Glass-ceramic Sealant for Planar SOFCs,” International Journal of Hydrogen Energy, Vol. 36, pp. 11895-11903, 2011.
    42. F. Smeacetto, A. Chrysanthou, T. Moskalewicz, and M. Salvo, ”Thermal Cycling of Crofer22APU-sealant-anode Supported Electrolyte Joined Structures for Planar SOFCs up to 3000h,” Materials Letters, Vol. 111, pp. 143-146, 2013.

    43. Y.-W. Tseng, Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2020.
    44. W.-T. Hung, Creep Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell, M.S. Thesis, National Central University, Tao-Yuan, Taiwan, 2021.
    45. Y.-T. Chiu and C.-K. Lin, ”Thermo-mechanical Fatigue Properties of a Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 219, pp. 112-119, 2012.
    46. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
    47. L. Paul, H. Hattendorf, L. Niewolak, B. Kuhn, O. Ibas, W. J. Quadakkers, and S. Antonio, Crofer® 22 H - A New High Strength Ferritic Steel for Interconnectors in SOFCs, Fuel Cell Symposium, San Antonio, USA, 2010.
    48. F. Kundie, C. H. Azhari, A. Muchtar, and Z. A. Ahmad, “Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments,” Journal of Physical Science, Vol. 29, pp. 141-165, 2018.
    49. Y.-X. Zhao, Q.-H. Fang, Y.-W. Liu, and C.-Z. Jiang, “Shielding Effects of Disclinations on the Elliptical Blunt Crack,” International Journal of Engineering Science, Vol. 70, pp. 91-101, 2013.

    QR CODE
    :::