跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柳芝螢
Chih-Ying Liu
論文名稱: 利用小角度中子及X光散射研究聚乙烯二醇化人類副甲狀腺素荷爾蒙(1-34)於溶液之結構
Structural Study of MonoPEGylated Human Parathyroid Hormone Fragments hPTH(1-34) in Solution Revealed by Small-Angle Neutron and X-ray Scattering
指導教授: 黃爾文
E-Wen Huang
陳文逸
Wen-Yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 小角度散射人類副甲狀腺素荷爾蒙聚乙烯二醇化
外文關鍵詞: SANS, Human Parathyroid Hormone, PEGylation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚乙烯二醇化 (PEGylation) 的胜肽或蛋白質藥物之物性、化性與生物活性取決於其接枝的聚乙烯二醇 (poly(ethylene glycol), PEG) 以及胜肽或蛋白質本身的結構。因此,了解聚乙烯二醇化的胜肽或蛋白質藥物之結構以及聚乙烯二醇和藥物之間之交互作用是相當重要的課題。本研究利用小角度中子及X光散射 (SANS及SAXS)、原二色光譜儀 (CD)、原子力顯微鏡 (AFM) 及穿透式電子顯微鏡 (TEM),研究聚乙烯二醇化人類副甲狀腺素荷爾蒙(1-34) (human parathyroid hormone (1-34)) 於溶液之結構,探討聚乙烯二醇化對人類副甲狀腺素荷爾蒙(1-34)和聚乙烯二醇本身結構之影響,以及不同接枝位置對其結構之效應。小角度散射圖譜顯示,人類副甲狀腺素荷爾蒙(1-34)於濃度100 mM的磷酸鹽緩衝溶液 (pH7.4) 中產生聚集,且聚集物之大小隨著溫度上升而變小,此在溶液中變溫時對其結構影響之結果為AFM及TEM無法做到的。
    將人類副甲狀腺素荷爾蒙(1-34)接枝單一聚乙烯二醇 (PEG5K) 後,因聚乙烯二醇的親水性,會自組裝 (self-assembly) 形成核-殼結構 (core-shell structure),較親水的聚乙烯二醇位於殼層,減少較疏水的人類副甲狀腺素荷爾蒙(1-34)與溶液接觸之表面積。利用柱狀結構加上表面連接高斯鏈 (Gaussian chain) 之形狀因子對實驗曲線作擬合,可求得核-殼結構之詳細結構資訊。擬合結果顯示,PEG5K接枝於人類副甲狀腺素荷爾蒙(1-34) C端之所形成核-殼結構的聚集數 (aggregation number) 約為接枝於N端的3倍。此外,聚乙烯二醇與人類副甲狀腺素荷爾蒙(1-34)間之作用力,使聚乙烯二醇貼附在人類副甲狀腺素荷爾蒙(1-34)之表面,造成接上人類副甲狀腺素荷爾蒙(1-34)之聚乙烯二醇之旋轉半徑 (radius of gyration) 較未接枝之聚乙烯二醇小。透過熱力學計算,推斷此作用力可能來自於PEG5K與人類副甲狀腺素荷爾蒙(1-34)間之charge-dipole作用力。


    In this study, we apply small-angle neutron and X-ray scattering (SANS and SAXS), circular dichroism (CD), atomic force microscope (AFM) and transmission electron microscopy (TEM) to investigate the peptide structure and the conjugated PEG chain conformation of monoPEGylated human parathyroid hormone (1-34) (hPTH(1-34)) in phosphate buffer. The enthalpic and entropic contributions of the PEG chain and the peptide due to conjugation are estimated accordingly.
    The scattering results show that the hPTH(1-34) in 100 mM phosphate buffer (pH7.4) aggregate into clusters. After hPTH(1-34) conjugated with PEG chain, the conjugates self-assemble into a core-shell structure with the PEG chains in the corona surrounding the hPTH(1-34) core. The core-shell structure helps reducing the surface accessible solvent area of the peptide. With model fitting by the form factor of a cylindrical core with Gaussian chains attached to the surface, the detailed structural information of the core-shell structures formed by the monoPEGylated hPTH(1-34) is extracted. The fitting results show that the conjugated PEG chain forms a collapsed conformation. This deformation suggests that the conjugate PEG interacts favorably with the peptide, so that part of the PEG chain bound to the surface of the peptide core instead of forming an unperturbed PEG coil adjacent to it. Moreover, the size of core-shell structure formed by the C-terminally monoPEGylated hPTH(1-34) is about three times larger than that of the N-terminally monoPEGylated ones. The different aggregation numbers of the self-assembled structures, triggered by different PEGylation sites, are reported. These size discrepancy due to different PEGylation sites could potentially affect the pharmacokinetics of the hPTH(1-34) drug. Therefore, the detailed structural analyses are important for development of “biobetters”.

    Abstract i 摘要 ii 致謝 iii Contents iv List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Overview 1 1.2. Motivation 4 Chapter 2. Background 8 2.1 Human Parathyroid Hormone (1-34) 8 2.2 Poly(Ethylene Glycol) 11 2.3 PEGylation and PEG-Polypeptide Conjugate 12 2.4 The Conformation of the Conjugated PEG Chain 14 2.5 Small-Angle X-ray and Neutron Scattering 16 Chapter 3. Experiments 21 3.1 Materials 21 3.2 Characterization 22 3.2.1 Circular Dichroism (CD) 22 3.2.2 Small-Angle Neutron Scattering (SANS) 23 3.2.3 Small-Angle X-ray Scattering (SAXS) 24 3.2.4 Atomic Force Microscope (AFM) 24 3.2.5 Transmission Electron Microscopy (TEM) 25 Chapter 4. Results and Discussion 26 4.1 Circular Dichroism (CD) Results 26 4.2 SANS and SAXS Data Analysis of Free PEG Chain 28 4.2.1 Guinier Analysis 29 4.2.2 Power-law Analysis 31 4.2.3 Model Fitting 32 4.3 SANS and SAXS Data Analysis of hPTH(1-34) 36 4.3.1 SANS Data Analysis of hPTH(1-34) 36 4.3.1.1 Power-law Analysis 37 4.3.1.2 Model Fitting 40 4.3.1.3 Volume Fraction of the Solvent Within a Primary Particle 44 4.3.2 SAXS Data Analysis of hPTH(1-34) 46 4.3.2.1. Model Fitting 46 4.3.2.2. Number of hPTH(1-34) Forming One Primary Particle 47 4.4 SANS Data Analysis of Cterm and Nterm-PEG-PTH(1-34) 49 4.4.1 Model Fitting 50 4.4.1.1. The Form Factor of a Core-Shell Cylinder Model 52 4.4.1.2. The Form Factor of a Micelle with a Cylindrical Core and Gaussian Polymer Chains Attached to the Surface 55 4.4.2 The Size Discrepancy of the Core-shell Structures Due to Different PEGylation Sites 64 4.4.3 Conformations of the Free PEG chain and the Conjugated PEG chain 66 4.4.4 The Charge-dipole Interactions Between the PEG Chain and the hPTH(1-34): An Energetic Point of View 68 4.5 Topographies of the monoPEGylated hPTH(1-34) 73 Chapter 5. Conclusion 75 Acknowledgement 77 References 78 Appendix 86 A. Low-Resolution 3D Structures reconstruction 86 A1. Ab-Initio Method by Single Phase Dummy Atom Model (program DAMMIF) 86 A2. Ab-Initio Method by Dummy Residue Model (program GASBOR), 90 B. The Accessible Surface Area (ASA) of hPTH(1-34) 92 Curriculum Vitae 94

    1. Roberts, M., Bentley, M., and Harris, J., Chemistry for peptide and protein PEGylation. Advanced drug delivery reviews, (2012)
    2. Veronese, F. M. and Pasut, G., PEGylation, successful approach to drug delivery. Drug discovery today. 10(21), p. 1451-1458 (2005)
    3. Harris, J. M., Martin, N. E., and Modi, M., Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 40(7), p. 539-51 (2001)
    4. Jain, A. and Jain, S. K., PEGylation: an approach for drug delivery. A review. Critical Reviews™ in Therapeutic Drug Carrier Systems. 25(5) (2008)
    5. Meng, F., Manjula, B. N., Smith, P. K., and Acharya, S. A., PEGylation of human serum albumin: Reaction of PEG-phenyl-isothiocyanate with protein. Bioconjugate chemistry. 19(7), p. 1352-1360 (2008)
    6. Lutz, J.-F. and Börner, H. G., Modern trends in polymer bioconjugates design. Progress in Polymer Science. 33(1), p. 1-39 (2008)
    7. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., and Davis, F. F., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry. 252(11), p. 3582-3586 (1977)
    8. Harris, J. M. and Chess, R. B., Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery. 2(3), p. 214-221 (2003)
    9. Kozlowski, A. and Milton Harris, J., Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. Journal of controlled release. 72(1), p. 217-224 (2001)
    10. Shu, J. Y., Tan, C., DeGrado, W. F., and Xu, T., New Design of Helix Bundle Peptide− Polymer Conjugates. Biomacromolecules. 9(8), p. 2111-2117 (2008)
    11. Harris, J. M., Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. 1992: Springer.
    12. Alconcel, S. N., Baas, A. S., and Maynard, H. D., FDA-approved poly (ethylene glycol)–protein conjugate drugs. Polymer Chemistry. 2(7), p. 1442-1448 (2011)
    13. Hamley, I. W., Ansari, I. A., Castelletto, V., Nuhn, H., Rosler, A., and Klok, H. A., Solution self-assembly of hybrid block copolymers containing poly(ethylene glycol) and amphiphilic beta-strand peptide sequences. Biomacromolecules. 6(3), p. 1310-5 (2005)
    14. Saag, K. G., Shane, E., Boonen, S., Marín, F., Donley, D. W., Taylor, K. A., Dalsky, G. P., and Marcus, R., Teriparatide or Alendronate in Glucocorticoid-Induced Osteoporosis. New England Journal of Medicine. 357(20), p. 2028-2039 (2007)
    15. Neer, R. M., Arnaud, C. D., Zanchetta, J. R., Prince, R., Gaich, G. A., Reginster, J.-Y., Hodsman, A. B., Eriksen, E. F., Ish-Shalom, S., and Genant, H. K., Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New England Journal of Medicine. 344(19), p. 1434-1441 (2001)
    16. He, L., Wang, H., Garamus, V. M., Hanley, T., Lensch, M., Gabius, H.-J., Fee, C. J., and Middelberg, A., Analysis of MonoPEGylated Human Galectin-2 by Small-Angle X-ray and Neutron Scattering: Concentration Dependence of PEG Conformation in the Conjugate. Biomacromolecules. 11(12), p. 3504-3510 (2010)
    17. Lund, R., Shu, J., and Xu, T., A Small-Angle X-ray Scattering Study of α-helical Bundle-Forming Peptide–Polymer Conjugates in Solution: Chain Conformations. Macromolecules. 46(4), p. 1625-1632 (2013)
    18. Pai, S. S., Hammouda, B., Hong, K., Pozzo, D. C., Przybycien, T. M., and Tilton, R. D., The Conformation of the Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and Mono-PEGylated Human Growth Hormone. Bioconjugate Chemistry. 22(11), p. 2317-2323 (2011)
    19. Svergun, D. I., Ekström, F., Vandegriff, K. D., Malavalli, A., Baker, D. A., Nilsson, C., and Winslow, R. M., Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic. Biophysical Journal. 94(1), p. 173-181 (2008)
    20. Shu, J. Y., Lund, R., and Xu, T., Solution structural characterization of coiled-coil peptide-polymer side-conjugates. Biomacromolecules. 13(6), p. 1945-55 (2012)
    21. Simonelli, C., Parathyroid Hormone: A New Treatment Option For Osteoporosis. Pharmacy and Therapeutics. 27, p. 4 (2002)
    22. Rosen, C. J. and Bilezikian, J. P., Anabolic therapy for osteoporosis. Journal of Clinical Endocrinology & Metabolism. 86(3), p. 957-964 (2001)
    23. Bringhurst, F., Demay, M., and Kronenberg, H., Hormones and disorders of mineral metabolism. Williams textbook of endocrinology. 11, p. 1203-1268 (1998)
    24. Quattrocchi, E. and Kourlas, H., Teriparatide: a review. Clinical therapeutics. 26(6), p. 841-854 (2004)
    25. Marx, U. C., Austermann, S., Bayer, P., Adermann, K., Ejchart, A., Sticht, H., Walter, S., Schmid, F. X., Jaenicke, R., Forssmann, W. G., and et al., Structure of human parathyroid hormone 1-37 in solution. J Biol Chem. 270(25), p. 15194-202 (1995)
    26. Marx, U. C., Adermann, K., Bayer, P., Forssmann, W.-G., and Rösch, P., Solution Structures of Human Parathyroid Hormone Fragments hPTH(1–34) and hPTH(1–39) and Bovine Parathyroid Hormone Fragment bPTH(1–37). Biochemical and Biophysical Research Communications. 267(1), p. 213-220 (2000)
    27. The PyMOL Molecular Graphics System, Schrödinger, LLC.
    28. Blick, S. A., Dhillon, S., and Keam, S., Teriparatide. Drugs. 68(18), p. 2709-2737 (2008)
    29. Hammouda, B., Ho, D. L., and Kline, S., Insight into Clustering in Poly(ethylene oxide) Solutions. Macromolecules. 37(18), p. 6932-6937 (2004)
    30. Abuchowski, A., Van Es, T., Palczuk, N., and Davis, F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry. 252(11), p. 3578-3581 (1977)
    31. Liao, S.-C., Lai, C.-S., Yeh, D.-D., Habibur Rahman, M., Hsu, C.-S., Chen, H.-L., and Chen, S.-A., Supramolecular structures of an amphiphilic hairy-rod conjugated copolymer bearing poly(ethylene oxide) side chain. Reactive and Functional Polymers. 69(7), p. 498-506 (2009)
    32. García-Arellano, H., Valderrama, B., Saab-Rincón, G., and Vazquez-Duhalt, R., High Temperature Biocatalysis by Chemically Modified Cytochrome c. Bioconjugate Chemistry. 13(6), p. 1336-1344 (2002)
    33. Fee, C. J. and Van Alstine, J. M., Prediction of the Viscosity Radius and the Size Exclusion Chromatography Behavior of PEGylated Proteins. Bioconjugate Chemistry. 15(6), p. 1304-1313 (2004)
    34. Lu, Y., Harding, S. E., Turner, A., Smith, B., Athwal, D. S., Grossmann, J. G., Davis, K. G., and Rowe, A. J., Effect of PEGylation on the solution conformation of antibody fragments. Journal of Pharmaceutical Sciences. 97(6), p. 2062-2079 (2008)
    35. Roe, R.-J., Methods of X-ray and neutron scattering in polymer science. Vol. 130. 2000: Oxford University Press New York.
    36. Chen, S. L., Jeng, U. S., Polymer Nanostructures Studies by Small-Angle X-Ray Scattering. Instruments Today 29(2), p. 11 (2007)
    37. Lindner, P. and Zemb, T., Neutrons, X-rays, and light: scattering methods applied to soft condensed matter. 2002: Elsevier Amsterdam.
    38. Kelly, S. M., Jess, T. J., and Price, N. C., How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 1751(2), p. 119-139 (2005)
    39. Vandermeulen, G. W., Tziatzios, C., and Klok, H.-A., Reversible self-organization of poly (ethylene glycol)-based hybrid block copolymers mediated by a de novo four-stranded α-helical coiled coil motif. Macromolecules. 36(11), p. 4107-4114 (2003)
    40. Jain, A. and Ashbaugh, H. S., Helix Stabilization of Poly (ethylene glycol)–Peptide Conjugates. Biomacromolecules. 12(7), p. 2729-2734 (2011)
    41. Kline, S., Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography. 39(6), p. 895-900 (2006)
    42. Guinier, A. and Fournet, G., Small-angle scattering of X-rays. 1955: Wiley.
    43. Das, R. and Doniach, S., Structural Studies of Proteins and Nucleic Acids in Solution Using Small Angle X-Ray Scattering (SAXS), in Soft Matter Characterization, Borsali, R. and Pecora, R., Editors. 2008, Springer Netherlands. p. 1083-1108.
    44. Beaucage, G., Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. Journal of Applied Crystallography. 29(2), p. 134-146 (1996)
    45. Pedersen, J. S. and Schurtenberger, P., Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. Macromolecules. 29(23), p. 7602-7612 (1996)
    46. Holmberg, K., Jönsson, B., Kronberg, B., and Lindman, B., Physicochemical Properties of Surfactants and Polymers Containing Oxyethylene Groups, in Surfactants and Polymers in Aqueous Solution. 2003, John Wiley & Sons, Ltd. p. 97-118.
    47. Rai, D. K., Beaucage, G., Jonah, E. O., Britton, D. T., Sukumaran, S., Chopra, S., Gonfa, G. G., and Harting, M., Quantitative investigations of aggregate systems. J Chem Phys. 137(4), p. 044311 (2012)
    48. Marx, U. C., Adermann, K., Bayer, P., Forssmann, W. G., and Rosch, P., Solution structures of human parathyroid hormone fragments hPTH(1-34) and hPTH(1-39) and bovine parathyroid hormone fragment bPTH(1-37). Biochem Biophys Res Commun. 267(1), p. 213-20 (2000)
    49. Beaucage, G., Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. Journal of Applied Crystallography. 28(6), p. 717-728 (1995)
    50. Kamberi, M., Chung, P., DeVas, R., Li, L., Li, Z., Ma, X. S., Fields, S., and Riley, C. M., Analysis of non-covalent aggregation of synthetic hPTH (1-34) by size-exclusion chromatography and the importance of suppression of non-specific interactions for a precise quantitation. J Chromatogr B Analyt Technol Biomed Life Sci. 810(1), p. 151-5 (2004)
    51. Fink, H. P., Structure analysis by small-angle X-ray and neutron scattering. Von L. A. FEIGIN und D. I. SVERGUN. ISBN 0-306-42629-3. New York/London: Plenum Press 1987. XIII, 335 S., geb. US $ 95.40. Acta Polymerica. 40(3), p. 224-224 (1989)
    52. Livsey, I., Neutron scattering from concentric cylinders. Intraparticle interference function and radius of gyration. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 83(8), p. 1445-1452 (1987)
    53. Liu, Y., Chen, S.-H., and Huang, J. S., Small-Angle Neutron Scattering Analysis of the Structure and Interaction of Triblock Copolymer Micelles in Aqueous Solution. Macromolecules. 31(7), p. 2236-2244 (1998)
    54. Förster, S. and Burger, C., Scattering Functions of Polymeric Core−Shell Structures and Excluded Volume Chains. Macromolecules. 31(3), p. 879-891 (1998)
    55. Pedersen, J. S. and Gerstenberg, M. C., Scattering Form Factor of Block Copolymer Micelles. Macromolecules. 29(4), p. 1363-1365 (1996)
    56. Pedersen, J., Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. Journal of Applied Crystallography. 33(3 Part 1), p. 637-640 (2000)
    57. Fournet, G., Scattering functions for geometrical forms. Bull. Soc. Fr. Minéral. Cryst. 74, p. 39-113 (1951)
    58. Debye, P., Molecular-weight Determination by Light Scattering. The Journal of Physical and Colloid Chemistry. 51(1), p. 18-32 (1947)
    59. Stanley, C. B., Perevozchikova, T., and Berthelier, V., Structural formation of huntingtin exon 1 aggregates probed by small-angle neutron scattering. Biophys J. 100(10), p. 2504-12 (2011)
    60. Hamed, E., Xu, T., and Keten, S., Poly(ethylene glycol) Conjugation Stabilizes the Secondary Structure of α-Helices by Reducing Peptide Solvent Accessible Surface Area. Biomacromolecules. 14(11), p. 4053-4060 (2013)
    61. Hoagland, D., The physics of polymers: Concepts for understanding their structures and behavior, by Gert R. Strobl, Springer-Verlag, New York, 1996. ISBN 3-540-60768-4. Journal of Polymer Science Part A: Polymer Chemistry. 35(7), p. 1337-1338 (1997)
    62. Atkins, P. and de Paula, J., Elements of Physical Chemistry. 2013: OUP Oxford.
    63. Wilson, A., Tables of Interatomic Distances and Configuration in Molecules and Ions. Acta Crystallographica. 12(2), p. 174 (1959)
    64. Garrett, R. and Grisham, C., Biochemistry. 2008: Cengage Learning.
    65. Laidler, K. J., Meiser, J. H., and Sanctuary, B. C., Physical Chemistry. 2003: Houghton Mifflin.

    QR CODE
    :::