跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳珮蓉
Pei-jung Chen
論文名稱: 利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究
Adsorption of phthalate esters by carbon nanotubes with and without oxidation
指導教授: 秦靜如
Ching-Ju Monica Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 奈米碳管疏水性π-π分散力鄰苯二甲酸酯類
外文關鍵詞: hydrophobicity, π-π interactions, phthalate esters (PAEs), single-walled carbon nanotubes (SWCNTs)
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由酸氧化在奈米碳管表面引入官能基,利用奈米碳管吸附不同碳數的鄰苯二甲酸酯類(鄰苯二甲酸二甲酯、鄰苯二甲酸二乙酯及鄰苯二甲酸二丁酯),探討奈米碳管表面官能基對不同烷基側鏈之苯環衍生物吸附影響。
    研究結果發現,經硝酸氧化處理後奈米碳管表面引入COOH官能基,且管外或總表面積皆與酸氧化前相差不大。由動力吸附實驗發現,奈米碳管吸附鄰苯二甲酸酯類達平衡所需時間順序為鄰苯二甲酸二甲酯> 鄰苯二甲酸二乙酯 > 鄰苯二甲酸二丁酯,並遵循擬二階動力模式。等溫吸附曲線實驗結果顯示,鄰苯二甲酸二甲酯與鄰苯二甲酸二乙酯由於疏水性不同,未經酸氧化之奈米碳管對於相對疏水之鄰苯二甲酸二乙酯表現出較高之吸附能力。再者,經酸氧化後之奈米碳管因水簇效應及電子分佈之影響導致吸附量下降。不論酸氧化前後的奈米碳管,對於鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯的吸附較符合Freundlich模式。經熱力學分析得知酸氧化前後之奈米碳管吸附鄰苯二甲酸二甲酯之ΔH 0< 0,顯示此吸附為放熱反應;而酸氧化前後之奈米碳管吸附鄰苯二甲酸二乙酯之ΔH0 > 0,顯示此吸附為吸熱反應。酸氧化前與後之奈米碳管吸附鄰苯二甲酸二甲酯之ΔG0階隨溫度上升而上升,顯示在低溫有利於吸附;酸氧化前與後之奈米碳管吸附鄰苯二甲酸二乙酯為高溫有利於吸附。又由ΔH0及ΔG0得知碳管吸附鄰苯二甲酸酯類為物理吸附。在不同pH值下,未經酸氧化奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯實驗結果為當pH = 9時之吸附量比pH值為3與6高;而經酸氧化後奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯,結果顯示與未經酸氧化奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯相較之下,pH值為9之吸附量有下降之趨勢。其原因為未經酸氧化奈米碳管與鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯之π-π分散力增強,造成吸附量上升;而經酸氧化奈米碳管與鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯間靜電斥力較未經酸氧化奈米碳管大導致吸附量下降。


    Adsorption of phthalate esters (PAEs) by single-walled carbon nanotubes (SWCNTs) with and without oxidation by nitric acid was conducted to investigate the influences of ester substitution groups on the benzene rings on the adsorption by CNTs. Dimethyl phthalate (DMP)、diethyl phthalate (DEP) and dibutyl phthalate (DnBP) were used. With proper treatment, the BET surface areas and pore size distributions of SWCNTs before and after oxidation were almost the same, thus, the influences of oxidation of SWCNTs on the adsorption of PAEs would only be contributed by the oxygen-containing surface group. The adsorption rates from the fastest to the slowest were DMP, DEP, and DnBP, and followed the pseudo-second order kinetic model. The Freundlich isotherm models fitted the adsorption of DMP and DEP by both SWCNTs with and without acid oxidation. Both SWCNTs with and without oxidation had better adsorption capacities for DEP than for DMP. This may be because that the DEP is less polar than DMP and results in stronger attraction to non-polar graphene. Furthermore, water clustering and electronic distribution of oxidized SWCNTs resulted in decreases in the adsorption capacity. The adsorption of DEP was endothermic while the adsorption of DMP was exothermic The enthalpy change and free energy change suggested that the adsorption of PAEs onto SWCNTs was a physisorption process. The adsorption capacity of PAEs by without oxidation SWCNTs at solution pH of 9 were more than those at solution pH values of 3 and 6. Dissociation of ester groups at high solution pH resulted in stronger???? interactions between the PAEs molecules and the SWCNTs. For oxidized SWCNTs, the adsorption capacity at high pH decreased, which is due to the electrostatic repulsion between the dissociated surface groups on SWCNTs and ester groups on PAEs.

    圖目錄 III 表目錄 V 第一章 前言 1 1-1研究緣起 1 1-2研究目的 2 1-3研究流程 2 第二章 文獻回顧 4 2-1 奈米碳管 4 2-1-1 基本特性 4 2-1-2 奈米碳管之合成與製備方法 5 2-2 吸附理論 7 2-2-1 物理吸附與化學吸附 7 2-2-2 液相吸附擴散機制 9 2-2-3 等溫吸附模式 10 2-2-4 動力吸附模式 11 2-2-5 影響吸附之因素 13 2-2-5奈米碳管吸附污染物 15 2-3 鄰苯二甲酸酯類 19 第三章 實驗方法 22 3-1 實驗設備與材料 22 3-1-1 實驗設備 22 3-2 實驗方法 28 3-2-1 奈米碳管之氧化程序 28 3-2-2 奈米碳管定性分析 29 3-2-3 鄰苯二甲酸酯類分析方法 30 3-2-4鄰苯二甲酸酯類的定量 30 3-2-5 吸附動力實驗 32 3-2-6 等溫吸附平衡實驗 34 3-2-7 不同pH之吸附平衡實驗 35 第四章 結果與討論 37 4-1 奈米碳管酸氧化前後之特性分析 37 4-1-1 表面型態及孔隙分析 37 4-1-2 界達電位分析 41 4-2 吸附平衡動力實驗 43 4-3 酸氧化前後奈米碳管之等溫吸附實驗 47 4-3-1酸氧化前奈米碳管吸附DMP與DEP 51 4-3-2 酸氧化前後奈米碳管吸附DMP及DEP 54 4-4 熱力學分析 56 4-5 pH值對酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之影響 63 第五章 結論與建議 69 5-1 結論 69 5-2 建議 70 參考文獻 71

    [1] K. Yang and B. S. Xing, “Adsorption of fulvic acid by carbon nanotubes from water,” Environmental Pollution, 157, 1095-1100 (2009).
    [2] C. J. M. Chin, L. C. Shih, H. J. Tsai, and T. K. Liu, “Adsorption of o-xylene and p-xylene from water by SWCNTs,” Carbon, 45, 1254-1260 (2007).
    [3] 蔡涵哲,「以單壁奈米碳管吸附芳香族化合物吸附機制之探討」,碩士論文,國立中央大學環境工程研究所,2006。
    [4] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58 (1991).
    [5] S. Iijima and T. Ishihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, 603-605 (1993).
    [6] 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,中正大學化學工程研究所,2002。
    [7] 化工產業技術知識網: http://www.chemtech.com.tw
    [8] P. Queipo, A. G. Nasibulin, S. D. Shandakov, H. Jiang, D. Gonzalez, and E. I. Kauppinen, “CVD synthesis and radial deformations of large diameter single-walled CNTs,” Current Applied Physics , 9, 301-305 (2009).
    [9] S. Porro, S. Musso, M. Giorcelli, A. Tagliaferro, S. H. Dalal, K. B. K. Teo, D. A.
    Jefferson, and W. I. Milne, “Study of CNTs and nanographite grown by thermal CVD using different precursors,” Journal of NonCrystalline Solids, 352, 1310-1313 (2006).
    [10] X. J. Zhang, W. Jiang, D. Song, J. X. Liu, and F. S. Li, “Preparation and catalytic activity of Ni/CNTs nanocomposites using microwave irradiation heating method,” Materials Letters, 62, 2343-2346 (2008).
    [11] 工業污染防治技術手冊-有機溶劑污染控制,1995。
    [12] P. C. Hiemenz and R. Rajagopalan, “Principles of colloid and surface chemistry,” 3rd ed, Marcel Dekker,Inc. ,New York, 405-407, 411-412 (1997).

    [13] 吳錦昆,「氧化鋁吸附地下水中砷之研究」,碩士論文,成功大學環境工程學系,1999。
    [14] 邱誌忠,「半導體產業高濃度含砷廢水之處理-化學沈降法與活性碳吸附法之評估」,碩士論文,中興大學環境工程學系,2004。
    [15] S. D. Faust and O. M. Aly, Adsorption process for water treatment, Boston Butterworth, 16-22, 185-191 (1987).
    [16] 劉明翰,「粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立」,國立中山大學環境工程研究所論文,2001。
    [17] 林哲仁,「活性碳之評估與選擇」,環境工程會刊,第六卷第一期,第23-24頁,1995。
    [18] 劉曾旭,「活性碳製造技術及應用」,產業調查與技術 第一二七期,第84-88頁,1999。
    [19] J. P. Chen and S. Wu, “Acid/Base-treated activated carbons: characterization of functional groups and metal adsorptive properties,” Langmuir, 20, 2233-2242 (2004).
    [20] F. Julien, M. Baudu, and M. Mazet, “Relationship between chemical and physical surface properties of activated carbon,” Water Research, 32, 3414-3424 (1998).
    [21] M. Franz, H. A. Arafat, and N. G. Pinto, ”Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon,” Carbon, 38, 1807-1819 (2000).
    [22] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao,“Modification of the surface chemistry of activated carbon,” Carbon, 37, 1379-1389 (1999).

    [23] L. Li, P. A. Quinlivan, and D. R. U. Knppe, “Effect of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution,”Carbon, 40, 2085-2100 (2002).
    [24] 林哲仁,「淺談活性碳吸附現象之影響因素」,環境工程會刊,第六卷第二期,第14頁,1995。
    [25] Y. H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, “Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, 41,1057-1062 (2003).
    [26] C. Lu and H. Chiu, “Adsorption of zinc (II) from water with purified carbon nanotubes,” Chemical Engineering Science, 61, 1138-1145 (2006).
    [27] Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, “Lead adsorption on carbon nanotubes,” Chemical Physics Letters, 357, 263-266 (2002).
    [28] C. Lu, Y. L. Chung, and K. F. Chang, “Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, 39, 1183-1189 (2005).
    [29] R. Q. Long and R. T. Yang, “Carbon nanotubes as superior sorbent for dioxin removal,” Journal of American Chemical Society, 123, 2058-2058 (2001).
    [30] X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia, “Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes,” Chemical Physics Letters, 376, 154-158 (2003).
    [31] C. Lu, F. Su, and S. Hu, “Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions,” Applied Surface Science, 254, 7035-7041 (2008).

    [32] C. Y. Kuo, C. H. Wu, and J. Y. Wu, “Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters,” Journal of Colloid and Interface Science, 327, 308-315 (2008).
    [33] 楊惠珠,「利用奈米碳管吸附水中壬基苯酚之研究」,碩士論文,國立台灣大學環境工程研究所,2008。
    [34] W. Den, H. C. Liu, S. F. Chan, K. T. Kin, and C. Huang, “Adsrption of phthalate esters with multiwalled carbon tubes and its application,” Journal of Environmental Engineering and Management, 16, 275-282 (2006).
    [35] 郭淑慧,「以奈米碳管對水中偶氮染料之吸脫附行為探討」,碩士論文,雲林科技大學, 2006。
    [36] 鍾孟佳,「奈米碳管吸附水中腐植酸之研究」,碩士論文,國立中興大學環境工程研究所,2007。
    [37] 林芳琪、譚仁豪、陳珮蓉、李建徹、張祐滋、郭昭吟,「官能基化之奈米碳管改質程序及其吸附效能之研究」,海峽兩岸大學校長論壇暨科學技術研討會,2008。
    [38] 劉旭娟、詹舒斐、鄧宗禹、金光祖、黃志彬,「改良式固相萃取技術應用於超純水中鄰苯二甲酸酯類之微量分析」,第二屆環境保護與奈米科學技術研討會,清華大學,2005。
    [39] S. Gotovac, C. M. Yang, Y. Hattori, K. Takahashi, H. Kanoh, and K. Kaneko, “Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters,” Journal of Colloid and Interface Science, 314, 18-24 (2007).
    [40] D. H. Lin and B. S. Xing, “Adsorption of phenolic compounds by carbon canotubes: role of aromaticity and substitution of hydroxyl groups,” Evironmental Science & Technology, 42, 7254-7259 (2008). 
    [41] B. Pan and B. S. Xing, “Adsorption mechanisms of organic chemicals on carbon nanotubes,” Evironmental Science & Technology, 42, 9005-9013 (2008).
    [42] C. A. Staples, D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: A literature review,” Chemosphere, 35, 667-749 (1997).
    [43] 廖建森、張碧芬、袁紹英,環境荷爾蒙-塑膠添加物(鄰苯二甲酸酯類)之環境流布,環境檢驗雙月刊,第38期,2001。
    [44] 行政院環保署。淡水河水體環境分析與研究,環保署環境檢驗所年度報告,1998。
    [45] A. Turner, M. C. Rawling, “The behaviour of di-2-ethylhexyl phthalate in estuaries,” Marine Chemistry, 68 , 203–217 (2000).
    [46] B. Xu, N. Y. Gao, H. Cheng, S. J. Xia, M. Rui, and D. D. Zhao, “Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process,” Journal of Hazardous Materials, 162, 954-959 (2009).
    [47] R. Lertsirisopon, S. Soda, K. Sei, and M. Ike, “Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation,” Journal of Environmental Sciences, 21, 285-290 (2009).
    [48] J. L. Wang, “Effect of di-n-butyl phthalate (DBP) on activated sludge,” Process Biochemistry, 39, 1831-1836 (2004).
    [49] S. Y. Yuan, C. Liu, C. S. Liao, and B. V. Chang, “Occurrence and microbial degradation of phthalate esters in Taiwan river sediments,” Chemosphere, 49, 1295-1299 (2002).
    [50] E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances,” Journal of American Chemical Society, 73, 373-380 (1951).

    [51] Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, 70, 115-124 (1998).
    [52] F. Wang, J. Yao, K. Sun, and B. S. Xing, “Adsorption of dialkyl phthalate esters on carbon nanotubes,” Evironmental Science & Technology, 44, 6985-6991 (2010).
    [53] I. I. Fasfous, E. S. Radwan, and J. N. Dawoud, “Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes,” Applied Surface Science, 256, 7246-7252 (2010).
    [54] M. Kara, H. Yuzer, E. Sabah, and M. S. Celik, “Adsorption of cobalt from aqueous solutions onto sepiolite,” Water Research, 37, 224-232 (2003).
    [55] Y. Yu, Y. Y. Zhuang, Z. H. Wang, and M. Q. Qiu, “Adsorption of water-soluble dyes onto modified resin,” Chemosphere, 54, 425-430 (2004).
    [56] 劉旭娟,「改良式固相萃取技術應用於超純水中鄰苯二甲酸酯類之微量分析」,碩士論文,國立交通大學環境工程系所,2004。
    [57] Z. Xu, W. Zhang, L. Lv, B. Pan, P. Lan, and Q. Zhang,“A new approach to catalytic degradation of dimethyl phthlate by a macroporous OH-type strongly basic anion exchange resin,” Evironmental Science & Technology, 44, 3130-3135 (2010).

    QR CODE
    :::