| 研究生: |
陳果逸 Kuo-Yi Chen |
|---|---|
| 論文名稱: |
逆斷層錯動下砂土層與淺基礎 互制受基礎載重及位置之影響 |
| 指導教授: | 黃文昭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 逆斷層 、離散元素法 、應力路徑 、最大主應力方向 、淺基礎 |
| 外文關鍵詞: | Reverse fault, Discrete element method, stress path, Major principle stress direction, Shallow foundation |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1999 年臺灣中部發生集集地震,造成許多造成許多生命財產的損失。在 這次地震中,車籠埔斷層的錯動造成嚴重的地表變形至 5 公尺,且座落於 地表變形影響範圍內,可以發現大量的基礎設施與結構損壞。為了解更多斷 層錯動與設施之影響,本研究以給定屬性淺基礎與斷層錯動進行數值模擬。
本研究使用二維顆粒流分析程式 PFC2D 5.0( Particle Flow Code in Two Dimension 5.0)進行逆斷層錯動模擬。本研究參考張有毅(2013),在 80g 下進 行砂箱試驗的數值模擬,其斷層上盤相對應的最大模型垂直位移(h)為 5 cm。本研究探討了乾砂土之逆斷層,於自由場與放置淺基礎之狀況下,在 不同地層深度位置,以土壤的應力路徑變化、主應力方向變化以及剪力破壞 之斷層錯動百分比的細部探討。此外亦將基礎載重、埋置深度以及放置位置 三種不同素,探討剪裂帶發展與基礎旋轉角,及其互制關係。
模擬結果顯示:砂性土層剪裂帶區的應力路徑變化主要受水平應力影響, 且以側向壓縮為主要路徑趨勢,由最大主應力方向來看亦是以水平應力為 主要方向。於剪力破壞之斷層錯動百分比中可發現基礎載重增加,會使基礎 下方之土層圍束效應加大,亦使該區塊需更大的斷層錯動以致破壞。而於基 礎載重加至 2 倍、基礎埋至土層以及基礎位置影響之案例中,其結果顯示: 基礎旋轉角與位置之關係(上盤近過渡帶)S/B=0> (過渡帶)S/B=0.69 > (下盤 近過渡帶)S/B=1> (上盤遠方)S/B=-2.39>(下盤遠方)S/B=3.33,而其中以基礎 放置於下盤且保持斷層露頭處約 15 公尺之距離最為安全,其他試驗中於上 盤處之基礎旋轉角較大。
In 1999, the Chi-Chi earthquake hit the central part of Taiwan and caused numerous loss of lives and properties. The offset of Chelungpu fault during this event induced severe ground deformation up to 5 m, and building failure can be found everywhere of the affected area. In order to study more of the building reaction during fault offset, we have modelled the fault offset with a shallow foundation of given properties.
The fault is modelled using the program Particle Flow Code in Two Dimensions (PFC2D). We have simulated a numerical model based on the sandbox test from Chang (2013), in which the model condition is under 80g (corresponding to maximum vertical displacement of 5 cm of the hanging wall). This study discussed the reverse fault with dry sandy soil in the condition of free field and shallow foundation. We used the way of the stress path variations, the principle stress direction and the ratio of dh/H with shear failure at different depth of the soils to investigate the result from numerical modeling. Furthermore, three different parameters, which are foundation load, embedding depth and placement position were also discussed about the interaction between the development of the shear zone and the rotation angle of the foundation in the study.
The results of the simulation show that the stress path variation of the sandy soil layer with fault rupture zone was mainly affected by the horizontal force , and the primary trend was lateral compression. Also, the results of the major principal stress direction, the horizontal stress was also the main direction in the fault rupture zone. In the other side, the ratio of the dh/H with shear failure shows that when the foundation load increase, the confining stress of the soil layer below the foundation would also increase, which required more fault displacement to cause the damage.
In the cases where the foundation loading is doubled, the embedding foundation and the foundation position affection, the results showed that: the relationship between the rotation angle of the foundation and the position was : (at the hanging wall which near the transition zone ) S/B=0 > (at the transition zone) S/B=0.69 > (at the footwall which near the transition zone) S/B=1 > (at the hanging wall far from the transition zone ) S/B=-2.39 > (at the footwall far from the transition zone) S/B=3.33. The safest position of the foundation was on the footwall, and about 15 meters away from the fault outcrop. In other tests, the foundation rotation angle at the hanging wall was larger.
1. 何春蓀 (1990),普通地質學,五南圖書出版股份有限公司,台北市。
2. 李錫堤、康耿豪、鄭錦桐、廖啟雯 (2000), 921 集集大地震之地表破裂
及地盤變形現象,地工技術(81),5-16。
3. 宋丘言 (2012),使用離散元素法進行乾砂直剪試驗模擬,碩士,國立中
央大學,桃園縣。
4. 林銘郎、李崇正、黃文正、黃文昭(2011),活動斷層近地表變形特性研
究(1/4) 100 年度成果報告,經濟部中央地質調查所報告第9 號。
5. 林銘郎、李崇正、黃文正、黃文昭(2014),活動斷層近地表變形特性研
究(4/4) 103 年度期末報告,經濟部中央地質調查所103 年度委辦計畫
期末報告。
6. 邱威智(2019),逆斷層錯動下土層應力場受淺基礎載重及位置之影響,
碩士,國立中央大學,桃園縣。
7. 張有毅 (2013),以離心模型試驗及個別元素法評估正斷層和逆斷層錯動
地表及地下變形,博士,國立中央大學,桃園縣。
8. 曾議德 (2017),逆斷層錯動下土層之力學及微觀組構變化初探, 碩士,
國立中央大學,桃園縣。
9. 潘國樑 (2013),工程地質通論,五南圖書出版股份有限公司,台北市,
137
第173-151 頁。
10. Anastasopoulos, I., Callerio, A., Bransby, M., Davies, M., El Nahas, A.,
Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., and Pecker, A. (2008).
"Numerical analyses of fault–foundation interaction." Bulletin of earthquake
engineering, 6(4), 645-675.
11. Bjerrum, L. "Allowable settlement of structures." Proc., Proceedings of the
3rd European Conference on Soil Mechanics and Foundation Engineering,
Wiesbaden, Germany, 135-137.
12. Bransby, M., Davies, M., El Nahas, A., and Nagaoka, S. (2008). "Centrifuge
modelling of reverse fault–foundation interaction." Bulletin of Earthquake
Engineering, 6(4), 607-628.
13. Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994). Earthquake fault
rupture propagation through soil. Journal of Geotechnical
Engineering, 120(3), 543-561.
14. Bray, J. D., Seed, R. B., & Seed, H. B. (1994). Analysis of earthquake fault
rupture propagation through cohesive soil. Journal of Geotechnical
Engineering, 120(3), 562-580.
15. Chu, S. S., Lin, M. L., Huang, W. C., Nien, W. T., Liu, H. C., & Chan, P. C.
(2015). Simulation of growth normal fault sandbox tests using the 2D discrete
element method. Computers & Geosciences, 74, 1-12.
16. Cundall, P. A., (1971). “A Computer Model for Simulating Progressive Large
Scale Movements in Blocky Rock Systems,” Proceedings of the Symposium
of the International Society of Rock Mechanics, Vol. 1, No. II-8, pp. 129-136.
17. Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for
granular assemblies. geotechnique, 29(1), 47-65.
18. Das, B. M., and Sobhan, K. (2013). Principles of geotechnical engineering,
Cengage learning.
19. Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., and Paolucci, R.
(2008). "Fault rupture–foundation interaction: selected case histories."
Bulletin of Earthquake Engineering, 6(4), 557-583.
20. Garcia, F. E., and Bray, J. D. (2019). "Discrete element analysis of earthquake
fault rupture-soil-foundation interaction." Journal of Geotechnical and
Geoenvironmental Engineering, 145(9), 04019046.
21. Gazetas, G., Anastasopoulos, I., & Apostolou, M. (2007). Shallow and deep
foundations under fault rupture or strong seismic shaking. In Earthquake
geotechnical engineering (pp. 185-215). Springer, Dordrecht.
22. Itasca Consulting Group Inc. (2008) PFC2D (Particle Flow Code in 2
138
Dimensions).Version4.0 Minneapolis, MN:ICG
23. Itasca, C. (2014). "PFC (particle flow code in 2 and 3 dimensions), version
5.0 [User’s manual]." Numer. Anal. Methods Geomech, 32(6), 189-213.
24. Lambe, T. W., and Marr, W. A. (1979). "Stress path method." Journal of
Geotechnical and Geoenvironmental Engineering, 105(ASCE 14655
Proceeding).
25. Lin, M.-L., Chung, C.-F., and Jeng, F.-S. (2006). "Deformation of overburden
soil induced by thrust fault slip." Engineering Geology, 88(1-2), 70-89.
26. Mujtaba, H., Farooq, K., Sivakugan, N., and Das, B. M. (2018). "Evaluation
of relative density and friction angle based on SPT-N values." KSCE Journal
of Civil Engineering, 22(2), 572-581.
27. Oettle, N. K., and Bray, J. D. (2013). "Fault rupture propagation through
previously ruptured soil." Journal of geotechnical and geoenvironmental
engineering, 139(10), 1637-1647.
28. Yimsiri, S., and Soga, K. (2000). "Micromechanics-based stress–strain
behaviour of soils at small strains." Geotechnique, 50(5), 559-571.