跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭敬龍
Jing-Long Cheng
論文名稱: 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
Stress analysis of films deposited by HMDSO/O2 plasma polymerization
指導教授: 李正中
Cheng-Chung Lee
郭倩丞
Chien-Cheng Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 電漿聚合薄膜應力
外文關鍵詞: plasma polymerization, Stress
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學薄膜是鍍製不同的高低折射率材料組成多層膜結構,利用干涉原理來達到光學效果。然而過多的膜層會導致薄膜應力過大使光學鍍膜之波面變形,易造成光電元件壽命短少,進而導致光學薄膜品質降低。過大的薄膜應力會使薄膜產生破裂或起皺而導致剝落,使得光學薄膜元件之良率與穩定性受到很大的誤差。因此如何有效利用鍍製具有可撓性之電漿聚合薄膜來減少多層光學薄膜之應力,是本研究所探討之重點。
    在本研究中使用電漿聚合反應來裂解HMDSO (Hexamethyldisiloxane)單體,進而鍍製出氧化矽摻碳氫之電漿聚合薄膜,分別改變HMDSO流量、氧氣流量、Beam Current以及Anode Voltage四種參數來鍍製電漿聚合薄膜,分析其組成結構、光學性質、元素比例與薄膜應力並且找出之間關係。從中發現當聚合薄膜之線狀/籠狀比例上升,應力大小會有下降之趨勢(從 GPa下降至 GPa),並且平均穿透率皆維持在90 %以上。證明了利用改變參數可以有效控制電漿聚合膜之線狀/籠狀比例並且可以預測出鍍製電漿聚合膜之應力。最後在鍍有電漿聚合薄膜之樣品上加上多層膜結構,證明電漿聚合薄膜能夠有效控制多層膜應力,降低70 %的多層膜應力。


    The large stress causes films cracking or wrinkling and resulted the thin films peeling, so that reduced the yield and stability of the optical thin films production. Therefore, how to coat flexible polymeric films effectively and reduce the stress of multilayer optical films is the aim in this study.
    In this study, HMDSO monomer was lysed by plasma polymerization, and then the plasma polymer films was coated. The composition structure, optical properties, proportion of elements and films stress of the coated polymer films were investigated by changing the flow of HMDSO, the flow of oxygen, beam current and anode voltage. The average transmittance of the deposited films is above 90%. When the Linear/Cage ratio decreases, the stress decreases from GPa to GPa. It proved that we can control the Linear/Cage ratio effectively and predicted the plasma polymer films stress by changing parameters. Finally, the multilayers were coated on the precoated polymer film shown that the stress of the multilayers was reduced 70 % effectively.

    總目錄 摘要……………………………………………………………………….I Abstract…………………………………………………………………..II 誌謝…..…………………………………………………………………III 總目錄……………………………………………………………….…..V 圖目錄………………………………………………………………......IX 表目錄…………………………………………………………………..XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究內容 2 第二章 基礎理論與文獻回顧 4 2-1 電漿輔助化學氣相沉積 4 2-1-1 電漿基本原理 4 2-1-2 電漿聚合[6] 6 2-1-3 HMDSO碎裂反應 9 2-2 薄膜應力與應力量測 11 2-2-1 薄膜應力分析 11 2-2-2 內應力分析 13 2-2-3 薄膜應力計算公式 16 2-2-4 減低薄膜應力方法 18 2-3 薄膜應力量測方法 19 2-3-1 干涉相移式應力量測法[40][41] 20 第三章 實驗方法與儀器原理 25 3-1 實驗方法 25 3-1-1 實驗流程 25 3-1-2 實驗步驟 26 3-2 鍍膜系統 28 3-2-1 有機單體-HMDSO 28 3-2-2 離子源系統 30 3-2-3 電子槍蒸鍍系統 31 3-3 量測儀器 34 3-3-1 紫外/可見/紅外光分光光譜儀 34 3-3-2 傅立葉轉換紅外線光譜儀 34 3-3-3 X射線光電子能譜儀 35 3-3-4 應力量測系統 37 第四章 結果與討論 38 4-1 討論不同氧氣流量對 薄膜結構之影響 38 4-1-1 FTIR分析 39 4-1-2 結構與應力之比較 42 4-2 討論不同HMDSO流量對 薄膜結構之影響 43 4-2-1 FTIR分析 43 4-2-2 鍍率與光學穿透率分析 45 4-2-3 結構與應力之比較 47 4-3 討論不同Beam current與Anode Voltage對 薄膜結構之影響 48 4-3-1 FTIR分析 49 4-3-2 光學穿透率分析 51 4-3-3 結構與應力之比較 52 4-4 XPS分析 53 4-4-1 不同Beam Current之XPS分析 55 4-4-2 不同HMDSO流量之XPS分析 57 4-5 薄膜應力與參數之關係 59 4-6 多層膜應力比較 61 第五章 結論 64 參考文獻………………………………………………………………..66

    [1]A.Nathan and B.R.Chalamala, “Special Issue on Flexble Electronics
    Techology, Part 1:System and Applications”, Proceeding of IEEE,Vol 93, Issue 7, pp.1235-1238, 2005.
    [2]潘漢昌,塑膠基板鍍膜與製程簡介,科儀新知(第145期),p88-97,2005。
    [3]李正中,薄膜光學與鍍膜技術(第七版),p410-414,2012。
    [4]D. Hegemann, U. Vohrer, C. Oehr, R. Riedel, Surface and Coatings
    Technology, 116-119, pp.1033-1036, 1999.
    [5]魏敬倫,以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳
    薄膜阻障層之研究,國立中央大學光電科學與工程學系,碩士論文,民
    國101年。
    [6]楊士賢,以脈衝式電漿輔助化學氣相沉積法製備氟化非晶薄膜之研究,
    中原大學化學工程學系,碩士論文,民國94年。
    [7]Q.Xie, J.Xu, L.Feng, L.Jiang, W.Tang, X.Luo, C.Han, “Facile creation creation of a super amphiphobic coating surface with bionic microstructure”, Adv.Mater., 16,pp.302-205, 2004.
    [8]C.Oehr, M.Muller, B.D.Hegemann, U.Vohree,Surface and Coatings Technology Technology, 116-110, pp.25-35, 1999.
    [9]D.Hegemann, R.Reidel, C.Oehr, Thin Solid Films, 339, pp.154-159, 1999.
    [10]H.Yasuda, T.Hirotsu, “Critical evaluation of condition of plasma polymerization” J.Polym.Sci.Pol.Chem., 16,pp.743, 1978.
    [11]M.R.Alexander, F.R.Johns, R.D.Short, J.Phys.Chem., B101, pp.3614, 1997.
    [12]M.Goujon, T.Belmonte, G.Henrion, “OES and FTIR diagnostics of
    gas mixtures for SiO_x deposition assisted by RF plasma”,
    Surface and Coatings Technology, 188-189, pp.756-761, 2004.
    [13]D.S.Campbell, Mechanical Properties of Thin Film,Thin Film Technology,
    L.I.Massel and R.Glang ed., New York, McGraw-Hill Book Company,
    pp.12-21, 1970.
    [14]K.L.Chopra, Mechanical effects in thin films, Thin Film Phenomena, p.266,
    McGRAW-HILL, New York, 1969.
    [15]R.W.Hoffman, Physics of Thin Films, Vol.3, Academic Press,New York, p.211, 1966.
    [16]K.Kinosita, K.Maki, K.Nakamizo, and K.Takeuchi, “Stress in vacuum deposited films of silver”, Jpn.J.Appl.Phys.6, pp.42-53, 1967.
    [17]J.D.Wilcock, ”Stress in thin films”,Ph.D.Dissertation,Electrical Engineering
    Department, Imperial College,London University,London, 1967.
    [18]E.Bauer, A.K.Green, and K.M.Kunz, “The formation of thin continuous films from isolated nuclei”, in Basic Problems in Thin Film Physics, edited by R.Niedermager and H. Mayer, Vandenhoeck and Ruprecht:Gottingen, pp.135-151, 1966.
    [19]E.Klokholm and B.S.Berry, “Intrinsic stress in evaporated metal films“, J.Electrochem.Soc., 115, pp.823-826, 1968
    [20]R.W.Hoffman, “Stress in thin films:the relevance of gain boundaries and impurities”, Thin Solid Films, 34, pp185-190, 1976.
    [21]P.A.Alexander and R.W.Hoffman, “Effect of impurities on intrinsic stress in thin Ni films” ,J.Vac.Sci.Tech., 13, pp.96-98, 1976.
    [22]F.M.D’Heurle, ”Aluminum films deposited by rf sputtering”, Metallurgical Transactions, 1, pp.725-732, 1970.
    [23]K.H.Muller, “Stress and microstructure of sputter-deposited thin films:Molecular dynamics investigations”, J.Appl. Phys., 62, pp.1796-1799, 1987.
    [24]H.Windischmann, “An intrinsic stress scaling law for polycrystalline thin
    films prepared by ion beam sputtering”, J.Appl. Phys., 62, pp.1800-1807,
    1987.
    [25]C.A.Davis, “A simple model for formation of compressive stress in thin film
    by ion bombardment“, Thin Solid Films, 226, pp3-14, 1993.
    [26]G.G.Stoney, “The tension of metallic films deposited by electrolysis”, Proc.
    Roy.Soc., A82, pp.172-175, 1909.
    [27]K.G.Soderberg and A.K.Graham, “Stress in electro-deposits–Its significance
    ”, Proc.Am.Electroplater’s Soc., 34, p.97, 1947.
    [28]R.H.D.Barklie and H.J.Davies, “The effect of surface conditions and electro
    deposited metal on the resistance of materials to repated stress”, Proc.Inst.
    Mech.Eng., p.2731, 1930.
    [29]C.E.Heussner, A.R.Balden,and L.M.Morse, “Stress Data on Copper Deposits from Alkaline Baths”, Plating, 35, pp.719, 1948.
    [30]A.Brenner and S.Senderoff, “Calculation of stress in electrodeposits from
    the curvature of a plated strip”, J.Research of the Nat’l.Bureau of U.S.
    Standards, 42 (Research paper RP1954), pp.105-123,1949.
    [31]N.N.Davidenkov, “Measurement of residual stress in electrolytic deposits”,
    Sov.Phys., 2, pp.1595-2598, 1961.
    [32]B.J.Pond, J.I.DeBar, C.K.Carniglia, and T.Raj, “Stress reduction in ion beam
    sputtered mixed oxide films”, APPLIED OPTICS,Vol.28,No.14,1989.
    [33]郭倩丞,高密度分波多工器(DWDM)濾光片的應力與溫飄特性研究,國
    立中央大學光電研究所,博士論文,民國96年。
    [34]李坤憲,濺鍍薄膜之光學常數與界面應力,國立中央大學光電科學與工
    程學系,博士論文,民國100年。
    [35]A.C.Ferrari, B.Kleinsorge, N.A.Morrison, A.Hart, V.Stolojan, and J.Robertson, “Stress reduction and bond stability during thermal annealing of tetrahedral amorphous”, Journal of Applied Physics 85, 7191, 1999.
    [36]H.K.Pulker, “Stress measurement and calculation for vacuum deposited
    Deposited films”, Thin Solid Film, 58, pp.371-376, 1979.
    [37]Hidetoshi YANAI, Nobuyuki KISHINE, Yukari KOMABA, and Tukitaka
    MURAKAMI, “Measurement of Young’s modulus and stress analysis of a
    magnetic thin film“, JSME Inter.J.Series A, Vol.39, No.1, pp.129-134, 1996.
    [38]Anthony E.Ennos, “Stresses developed in optical film coatings”, Applied
    Optics, Vol.5, No.5, No.1, Jan, pp.51-61, 1966.
    [39]H.Liungcrantz, L.Hultman, and J. E. Sundgren, “Residual Stress and
    Fracture Properties of Magnetron Sputtered Ti Films and Si Microelements”, J.Vac.Sci.Technol.A 11(3), pp.543-553, 1993.
    [40]田春林,光學薄膜應力與熱膨脹係數量測之研究,國立中央大學光電科
    學研究所,博士論文,民國89年。
    [41]江政忠,離子源輔助真空蒸鍍高反射拋物面鏡之研究,國立中央大學
    光電科學研究所,博士論文,民國85年
    [42]Tung-Ying Lin, and Ching-Ting Lee, “Organosilicon function of gas barrier
    films purely deposited by inductively coupled plasma chemical vapor
    deposition system”, Journal of Alloys and Compounds, 542, pp11-16, 2012.
    [43]Alfred Grill, Deborah A. Neumayer, “Structure of low dielectric constant to
    extreme low dielectric constant SiCOH films:Fourier transform infrared
    spectroscopy characterization”, Journal of Applied Physics 94, pp.6697, 2003.
    [44]P.Raynaud, B.Despax, Y.Segui, H.Caquineau, Plasma Process. Polym.2,
    pp.45–52, 2005
    [45]C.Y.Kim, S.H.Kim, H.S.Kim, R.Navamathavan, C.K.Choi, J.Korean Phys.
    Soc.50, pp.1119–1124, 2007.
    [46]P.G.Pai, S.S.Chao, Y.Takagi, G.Lucovsky, J.Vac.Sci.Technol.A4, pp.689, 1986.
    [47]C.T.Kirk, Phys Rev B 38, pp.1255, 1988.
    [48]E.Dehan, P. Temple-Boyer, R. Henda, J. J. Pedroviejo, E. Scheid, “Optical
    and structural properties of SiOx and SiN x materials”, Thin Solid Films,
    266, p.14, 1995.
    [49]Mariadriana Creatore, Fabio Palumbo, Riccardo d’Agostino, and Pierre Fayet, “RF plasma deposition of SiO-like films:plasma phase diagnostics and gas barrier film properties optimisation” Surface and Coatings Technology 142-144, pp.163-168, 2001.
    [50]M.R.Alexander, et al., Appl. Surf. Sci. 137, pp.179, 1999.

    QR CODE
    :::