| 研究生: |
陳廷嘉 Ting-Chia Chen |
|---|---|
| 論文名稱: |
氧化鎳助燒結技術應用於薄膜電解質固態氧化物燃料電池 NiO-assisted sintering of thin-film BaCe0.6Zr0.2Y0.2O3-δ electrolyte for proton–conducting solid oxide fuel cells |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 助燒結劑 、固態氧化物燃料電池 、電解質 、旋轉塗佈 |
| 外文關鍵詞: | SOFC, sintering agent, proton-conducting, spin coating |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以固相反應法合成質子傳導氧化物BaCe0.6Zr0.2Y0.2O3-δ (BCZY)電解質粉末,並將BCZY配置成電解質懸浮液以旋轉塗佈技術製備電解質薄膜,並探討添加助燒結劑於薄膜化電解質之影響。當添加3 wt% NiO至BCZY中,晶粒適當的成長且有效提升電解質燒結性質,使得電解質層數可從三層減少至兩層,進而縮短離子傳輸距離,且避免連通孔洞所造成之漏氣狀況。將添加NiO之兩層BCZY與三層BCZY之電池相比,於800 ℃下,最高功率密度可由61 mW/cm2提升至101 mW/cm2,除了有效減少質子傳輸之阻礙,由於電解質結構更為緻密使得電解質與陰、陽極有效反應面積將有所提升,於800 ℃下,總阻抗由5.81 Ωcm2降低至4.13 Ωcm2。於固相反應法中添加助燒結劑NiO,相較於溶膠-凝膠法、燃燒法等濕化學合成方法,其材料成本較低、製程方便且保持良好質子傳導性,因此更能實際應用於固態氧化物燃料電池之製程中。
Small amounts of sintering agent NiO added to the calcined BCZY powders are known to promote the grain growth and to accelerate the densification of the NiO-modified BCZY at relatively low temperature. The purpose of this study is to investigate the effect of sintering agent NiO on the performance of proton-conducting SOFC single cell. Proton-conducting oxide (BaCe0.6Zr0.2Y0.2O3-δ, BCZY) powders were synthesized by solid-state reaction method. The electrolyte suspension was prepared by mixing 0-10 wt% with BCZY electrolyte powder and binder PVP in pure ethanol. The uniform suspension was spread onto NiO-BCZY composite anode support by spin coating. A thin, dense and crack free BCZY electrolyte film was successfully obtained after sintering at 1500 ℃. Single cells comprising of LSCF/BCZY(0-10 wt% NiO)/NiO-BCZY were then fabricated and tested for their electrochemical performance at 550-800 ℃. The results showed that cell performance was improved by addition of NiO to enhance the electrolyte sinterability in cells with reduced electrolyte layers. The maximum power density was increased from 61 mW/cm2 to 101 mW/cm2 at 800 ℃. The result of EIS measurement indicates that the addition of NiO can reduce ohmic resistance as well as polarization resistance for the cell, resulting in the improved cell performance.
[1]W.R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, (1839).
[2]G. Hoogers, (Ed.) “Fuel cell technology handbook. CRC press”. (2002).
[3]黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005
[4]A.L. Lee, R. F. Zabransky, and W. J. Huber, “Internal Reforming Development for Solid Oxide Fuel Cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, (1990).
[5]L.M. Zhang and W.S. Yang, “Direct Ammonia Solid Oxide Fuel Cell Based on Thin Proton-conducting Electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, (2008).
[6]M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E.D. Bartolomeo, “Influence of the Ratio Between Ni and BaCe0.9Y0.1O3-δ on Microstructural and Electrical Properties of Proton Conducting Ni-BaCe0.9Y0.1O3-δ Anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, (2011).
[7]B.H. Rainwater, M.F. Liu, and M.L. Liu, “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, (2012).
[8]L. Bi, E. Fabbri, and E. Traversa, “Effect of Anode Functional Layer on the Performance of Proton-conducting Solid Oxide Fuel Cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, (2012).
[9]K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte Membrane for Proton Conducting Solid Oxide Fuel Cells”, Electrochemistry Communications, Vol. 11, 1618-1622, (2009).
[10]H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC Single Cells with Anode Active Layer via Tape Casting and Co-firing”, International Journal of Hydrogen energy, Vol. 33, pp. 2826-2833, (2008).
[11]Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, and S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for Prospective Application as Cathode for IT-SOFCs or Oxygen Permeating Membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[12]C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide Ion Diffusion in Perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A Molecular Dynamics Study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[13]W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Electrochemical Performance of Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathodes Prepared via Electroless Deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[14]B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, (2006).
[15]S.M. Haile, G. Staneff, and K.H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites” Journal of Materials Science, Vol. 36, pp. 1149-1160, (2001).
[16]H. Inaba and H. Tagawa, “Ceria-based Solid Electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, (1996).
[17]A. Arabacı and M.F. Öksüzömer, “Preparation and Characterization of 10 mol% Gd Doped CeO2 (GDC) Electrolyte for SOFC Applications”, Ceramics International, Vol. 38, pp. 6509-6515, (2012).
[18]L.P. Li and J.C. Nino, “Ionic Conductivity Across the Disorder-order Phase Transition in the SmO1.5-CeO2 System”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, (2012).
[19]S.C. Singhal and K. Kendall (Eds.), “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier Science (2004).
[20]T. Takahashi and H. Iwahara, “Ionic Conduction in Perovskite-type Oxide Solid Solution and Its Application to the Solid Electrolyte Fuel Cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[21]K.D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, (2003).
[22]T. Norby and Y. Larring, “Concentration and Transport of Protons in Oxides”, Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-599, (1997).
[23]E. Traversa, E.Fabbri, “Proton conducting for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications.
[24]N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, Vol. 244, pp. 456-462, (1995).
[25]M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, J. Mater. Chem., Vol. 10, pp. 1027-1038, (2000).
[26]K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138 , pp. 91–98, (2000).
[27]K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355–367, (1999).
[28]W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, Vol. 30, pp. 93-97, (1997).
[29]J. Sui, L. Cao, Q. Zhu, L.Yu, Q. Zhang, L. Dong, “Effects of proton-conducting electrolyte microstructure on the performance of electrolyte-supported solid oxide fuel cells”, Journal of Renewable and Sustainable Energy, Vol. 5 (2), (2013) .
[30]R.B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol–gel method”, Solid State Ionics, Vol. 178, pp.569-574, (2007).
[31]Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, Vol. 193, pp.400–407, (2009).
[32]W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, Vol. 91, pp.1155-1162, (2008).
[33]X.Zhu, Z. Lü, B. Wei, X. Huang, Y. Zhang, W. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196 (2), pp.729-733, (2011).
[34]Z. Wang, J. Qian, J. Cao, S. Wang, T. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437 (1-2), pp.264-268, (2007).
[35]Thomas O. Mason, “Advanced ceramics” Encyclopædia Britannica, (2016).
[36]J. M. Serra, W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90 (7), 2082-2089, (2007).
[37]D. Konwar, B. J. Park, P. Basumatary, H. H. Yoon, “Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3−δ thin films”, Journal of Power Sources, Vol. 353, pp.254-259, (2017).
[38]H.S. Noh, K. J. Yoon, B.K. Kim, H.J. Je, H.W. Lee, J.H. Lee, J.W. Son, “The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells”, Journal of Power Sources, Vol. 247, pp.105-111, (2014).
[39]R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, Journal of Applied Physics, Vol. 32, pp.787, (1961).
[40]M.F. Ashby, “A First Report on Sintering Diagrams”, Acta Metallurgica, Vol. 22, pp.275-289, (1974).
[41]EG & G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, (2004).
[42]E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute Of Technology Zurich, degree of doctor, (2008).
[43]N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp.232, (2006).
[44]J.H. Tong, Daniel Clark, Lisa Bernau, Michael Sanders, Ryan O’Hayre, “Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics”, Journal of Materials Chemistry, Vol. 20, pp.6333-6341, (2010).