跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳思緯
Szu-Wei Wu
論文名稱: 以Fabry Perot Etalon 做雷射高斯光束發散角量測之研究
The laser gaussian beam divergence measurement by Fabry Perot Etalon
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 光學量測發散角量測Fabry Perot Etalon
外文關鍵詞: 光學量測, 發散角量測, Fabry Perot Etalon
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以Fabry Perot Etalon做為雷射高斯光束發散角量測之研究,主要是利用高銳度係數之Fabry Perot Etalon對於雷射高斯光束發散角的變化,使得當入射角改變之掃描結果造成第一亮纹中強度e-1所對應兩點角度間距寬窄的改變,並配合曲線擬合的方式將雷射光之發散角度快速的量測出。
    本系統有著架構十分簡單、體積小、僅需單點量測和解析度高的優點。在雷射已達定溫狀態下,本系統的量測重複性之標準差為0.015 mrad、而系統量測解析度為0.021 mrad。


    A method for laser Gaussian beam divergence measurement by Fabry Perot etalon is proposed. The scan result by incident angle change correspond full width at half maximum of the first order fringe variation by high coefficient of finesse Fabry Perot etalon. With the curve fitting method, we can measure laser beam divergence quickly.
    Our system has advantage of simple structure, small size, high resolution and only single point measuring. The experimental results demonstrate that the resolution of the system is 0.021 mrad and the standard deviation of repeatability is 0.015 mrad.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 vii 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1雷射高斯光束發散角量測之文獻回顧 5 1-2-2準直光束之檢測 12 1-2-3 Etalon之相關研究 10 1-2-4 Febry Perot Interferometer 於光學量測上應用相關文獻 12 1-3 研究目的 14 1-4 論文架構 15 第二章 基礎理論 16 2-1 Fabry Perot Interferometer 16 2-1-1 Stoke’s relation 17 2-1-2 Multiple Beam Interference 18 2-1-3銳度係數F與穿透光強It變化之模擬 21 2-2高斯光束 23 2-2-1高斯光束傳播 23 2-2-2遠場光束半徑與發散角 25 2-2-3高斯光束等效模型之建立 26 2-3 小結 28 第三章 演算法模型之建立 29 3-1角度法-雷射發散角量測 30 3-1-1角度法-雷射高斯光束發散角量測演算法模型 30 3-1-2角度法-雷射高斯光束發散角量測參數模擬分析 37 3-2 映像法-雷射發散角量測 46 3-1-1映像法-雷射高斯光束發散角量測演算法模型 47 3-1-2映像法-雷射高斯光束發散角量測參數模擬分析 51 3-1-3映像法-雷射發散角量測性能分析 59 3-3 小結 64 第四章 實驗與結果分析 65 4-1量測步驟 68 4-2 量測結果 69 4-2-1-1定溫量測(雷射半徑=0.35mm) 69 4-2-1-1定溫量測(雷射半徑=0.23mm) 71 4-2-2非定溫量測 73 4-3 系統誤差分析 75 4-3-1步進馬達旋轉影響 75 4-3-2定溫波長飄動影響 77 4-3-3非定溫波長飄動影響 78 4-4 分析與討論 80 4-4-1量測重複性 80 4-4-2量測解析度 80 4-5 小結 81 第五章 結論與未來展望 82 參考文獻 83

    [1] Nobel Prize: The Nobel Prize in Physics 1965, Sin-Itiro Tomonaga, Julian Schwinger, Richard P. Feynman
    http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/#
    [2] Wikipedia: There’s Plenty of Room at the Bottom. 1959
    http://en.wikipedia.org/wiki/There''s_Plenty_of_Room_at_the_Bottom
    [3] M Duocastella and C.B. Arnold, ”Bessel and annular beams for material processing”, Laser Photonics Rev., DOI. 10.1002, Ipor. 201100031, 2012.
    [4] S Lazare and V Tokarev, ”Recent Experimental and Theoretical Advances in Microdrilling”, Proceedings of the SPIE, Vol. 5662, pp. 221-231, 2004.
    [5] J.D. Majumdar and I Manna,” Laser processing of materials”, Sadhana Vol. 28, pp. 495–562, 2003.
    [6] 黃志強,「選用雷射銲接材料及設定加工參數」, 中華民國職業訓練研究發展中心, 2001年.
    [7] J Blazej, I Prochazka and L Kral, ”Picosecond Laser Pulse Distortion by Propagation through a Turbulent Atmosphere”. Coherence and Ultrashort Pulse Laser Emission, Isbn. 978-953-307-242-5, 2010.
    [8] E Brambrink, J Schreiber, T Schlege, P Audebert, J Cobble, J Fuchs, M Hegelich and M Roth, ”Transverse Characteristics of Short-Pulse Laser-Produced Ion Beams”, Phys. Rev. Lett. Vol. 96, Issues. 15, 2006.
    [9] 張家豪,「透鏡光纖的研究與應用」, 銘傳大學, 碩士論文, 2010年.
    [10] 李宗憲,「透鏡光纖的光學模型與耦合效率之研究」, 中央大學, 碩士論文, 2003年.
    [11] 張國順、鄭壽昌, 「現代雷射製造技術」,第一版,新文京出版公司,2008年.
    [12] Eugene Hecht, 「OPTICS」, 4ed, Addison-Wesley, 2002.
    [13] 易善穠、陳瑞鑫、陳鴻仁、林依恩, 「光通訊原理與技術」, 第一版, 全華圖書, 2004年.
    [14] 林三寶, 「雷射原理與應用」,第二版,全華圖書出版公司,2009年.
    [15] J M Khosrofian and B A Garetz, ”Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data”, Applied Optics Vol 22, No. 21, pp. 3406–3410, 1983.
    [16] M.A.C. de Araujo, R Silva, E. de Lima, D. P. Pereira and P. C. de Oliveira, ”Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis”, Applied Optics Vol. 48, No.2, pp. 393–396, 2009.
    [17] J Falk, ”Measurement of laser beam divergence”, Applied Optics, Vol. 22, No.28, pp. 1131–1132, 1982.
    [18] 孫東平,劉秉琦,華文深,駱新新,”雙向剪切干涉法測量高斯光束遠場發散角”, Actaphotonica Sinica, Vol. 37, No.11, 2008.
    [19] M.P. Kothiyal, K.V. Sriram and R.S. Sirohi, ”Setting sensitivity in Talbot interferometry with modified gratings”, Optics & Laser Technology, Vol. 23, No 6, pp. 361–365, 1991.
    [20] C Shakher, S Prakash, D Nand and R Kumar, ”Collimation testing with circular gratings”, Applied Optics, Vol. 40, No. 8, pp. 1175, 2001.
    [21] J. Choi, G. M. Perera, M. D. Aggarwal, R. P. Shukla, and M. V. Mantravadi, ”Wedge-plate shearing interferometers for collimation testing: use of a moire’ technique”, Applied Optics, Vol. 34, No. 19, pp. 3628–3638, 1995.
    [22] K Matsuda, J. W. O’Byrne, C. J. R. Sheppard, S Rehman and T Eiju, ”Beam collimation in the presence of aberrations”, Optics Communications, Vol. 194, Issue 1–3, pp 1–9, 2001.
    [23] S Prakash, S Singh and S.Rana, ”Setting sensitivity in collimation testing using Lau interferometry”, Journal Of Optics, Vol. 18, pp. 290-294, 2006.
    [24] G Li, M. S. Zhao, and J.B. Zhang, ”Improved wedge-plate shearing interferometric technique for a collimation test”, Applied Optics, Vol. 31, No. 22, pp. 4363-4364,1992.
    [25] K. U. Hii and K. H. Kwek, ”Dual-prism interferometer for collimation testing”, Applied Optics, Vol. 48, No. 29, pp. 397-400, 2009.
    [26] A Anand, ”Collimation testing using photorefractive crystal and temporal coherence ”, Optical Engineering, Vol. 42, pp. 1108-1113, 2003.
    [27] M. V. R. K. Murty, ”The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source”, Applied Optics, Vol. 3, pp. 531-534, 1964.
    [28] Z Wu, G Xia, H Zhou, J Wu and M Liu, ”Transmission of a Gaussian beam after incidenting nonnormally on a Fabry–Perot etalon”, Optics & Laser Technology, Vol. 35, Issue 1, pp. 1-68, 2003.
    [29] Wikipedia: Michelson interferometer, 1887, Albert Abraham Michelson.
    http://en.wikipedia.org/wiki/Michelson_interferometer
    [30] Davidson Physics: Fabry–Perot interferometer, 1899, C. Fabry and A. Perot.
    http://www.phy.davidson.edu/stuhome/cabell_f/diffractionfinal/pages/fabry.htm#Theory.
    [31] A. D. Kersey, T. A. Berkoff, and W. W. Morey, ”Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter”, Optics Letters , Vol.18, No.16, pp. 1370-1372, 1993.
    [32] D Mandridis, I Ozdur, M Bagnell, and P. J. Delfyett, ” Free spectral range measurement of a fiberized Fabry–Perot etalon with sub-Hz accuracy”, Optics Express ,Vol. 18, No. 11, pp 11264, 2010.
    [33] J. P. Monchalin, ”Optical detection of ultrasound at a distance using a confocal Fabry–Perot interferometer”, Applied Physics Letters, Vol.47 , Issue 1, pp. 14-16, 1985.
    [34] G Beheim, ”Remote displacement measurement using a passive interferometer with a fiber-optic link”, Applied Optics, Vol. 24, Issue 15, pp. 2335, 1985.
    [35] S. T. Lin, S. L. Yeh, and Z. F. Lin ”Angular probe based on using Fabry-Perot etalon and scanning technique”, Optics Express, Vol. 18, Issue 3, pp. 1794-1800, 2010.
    [36] Y.C. Wang , L.H. Shyu and C.P. Chang, ”The Comparison of Environmental Effects on Michelson and Fabry-Perot Interferometers Utilized for the Displacement Measurement”, Sensors, No. 4: pp. 2577-2586, 2010.
    [37] B Yong, L. A. Wu , D. F. Cui , Z. Y. Xu , H. Q. Li ,A. C. Geng, ”Beam divergence effects on high power optical parametric oscillation”, Chinese Physics B, Vol. 14, Issue 10, pp.2026-2032, 2005.
    [38] Y. Y. Zhang, J. C. Lai, C. Yin, Q. H. Wang and Z. H. Li. ”The influences of the probe beam divergence on the performance of imaging surface plasmon resonance sensors”, Optics and Lasers in Engineering, Vol. 46, Issue 9, pp. 635-642, 2008.
    [39] 李正中、陳昇暉, 「干涉光學(Optical Interference and Interferometry) 」, 國立中央大學光電工程研究所, 2008.
    [40] Joseph T. Verdeyen, 「Laser Electronics」, 3rd, Prentice Hall, 1995.
    [41] 許阿娟、朱嘉雯、林佳芬、陳志隆, 「光學系統設計進階篇」, 4nd, 2002年.

    QR CODE
    :::