跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林怡雯
Yi-Wen Lin
論文名稱: 辛基苯酚聚氧乙基醇分解菌之多樣性及Pseudomonas sp. TX1代謝物之分析
The diversity of octylphenol polyethoxylate-degrading bacteria and the metabolites from Pseudomonas sp. TX1
指導教授: 黃雪莉
Shir-Ly Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 97
語文別: 英文
論文頁數: 126
中文關鍵詞: 辛基苯酚聚氧乙基醇生物降解環境荷爾蒙Pseudomonas sp. TX1
外文關鍵詞: octylphenol polyethoxylate, biodegradation, environmental hormone, Pseudomonas sp. TX1
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 辛基苯酚聚氧乙基醇 (Octylphenol polyethoxylates, OPEOn)為一聚氧乙烯鏈鏈長從4到15,平均鏈長9.5的混合物,商品名為Triton X-100,屬於非離子性界面活性劑的一種,被廣泛使用於工業應用、農業及家庭清潔劑中。此研究中從農藥工廠、稻田及中央大學排放水的表土及底泥中分離出43株菌株,以95種不同碳源組合圖譜(BioLog方法)及16S rRNA序列比對作菌種鑑定。其中除了Pseudomonas這屬的菌株外,Moraxella osloensis、Aquaspirillum peregrinum ss integrum、Brevibacterium iodinum、Photobacterium logei、Ochrobactrum sp.、Cupriavidus sp.、Ensifer adhaerens、Achromobacter xylosoxidans及Brevbacterium iodinum皆尚未被發表過具有分解OPEOn的能力;其中,B. iodinum為唯一的一株革蘭氏陽性菌。農藥工廠溫室中分離中的菌相複雜度大於稻田,而稻田的菌相複雜度又大於中央大學排放水底泥。初步菌株活性分析,以OPEOn為唯一碳源培養之菌體測定對OPEOn、同樣具有聚氧乙烯鏈的dodecyl octaethoxylate (AEO8)及其推測可能之代謝產物之消耗氧氣的能力。依菌株對於不同化合物具有不同的耗氧活性,將其分成三類:第一類菌株對於OPEOn及AEO8具有較高耗氧活性,其中包括Pseudomonas sp. TX1;第二類菌株則對OPEOn具較高耗氧活性,但對AEO8則無;第三類菌株只有B. iodinum,為唯一對具雌激素活性化合物辛基苯酚(octylphenol, OP)具耗氧活性的菌株。
    在43株具分解OPEOn能力的菌株中,Pseudomonas sp. TX1生長素率最快且對OPEOn的耗氧活性最高,並能生長在0.05%到20%的OPEOn濃度中,其生長速率在0.34到0.44 hr-1之間。以高效能液相層析質譜儀(HPLC-MS)分析菌株TX1分解OPEOn的代謝產物,推斷此菌株能減短聚氧乙烯鏈並生成OP。在此菌株生長的對數期(log phase)有短鏈的羧酸化產物生成,例如在烷基鏈上產生羧酸化的carboxyoctylphenol polyethoxylates (COPEOn, n = 2, 3)及雙羧酸化產物carboxyoctylphenol polyethoxycarboxylates (COPECn, n = 2, 3);在聚氧乙烯鏈產生羧酸化產物octylphenol polyethoxycarboxylates (OPECn, n = 1-3)則在菌株生長進入靜止期(stationary phase)後生成。所有短鏈的代謝物:OPEOn、OPECn、COPEOn及COPECn皆在靜止期有累積的現象。在文獻中尚未有研究發表過由好氧菌分解OPEOn而生成在烷基鏈上產生羧酸化產物COPEOn及雙羧酸化產物COPECn的現象,Pseudomonas sp. TX1為第一株被發現據此能力的菌株。


    Octylphenol polyethoxylates (OPEOn), also known as Triton X-100, a nonionic surfactant, was widely used in industrial, agricultural, and domestic applications. It is a mixture composed of OPEOn (n = 4~15) with an average unit of ethoxylate at 9.5. In this study, forty three bacterial strains were isolated from soil samples and sediments of pesticide factory, rice field, drainage of dormitory on campus. They were identified by two methods, Biolog breathprinting and 16S rDNA sequence analysis. Except species from Pseudomonas, other bacteria included Moraxella osloensis, Aquaspirillum peregrinum ss integrum, Brevibacterium iodinum, Photobacterium logei, Ochrobactrum sp., Cupriavidus sp., Ensifer adhaerens, Achromobacter xylosoxidans, and Brevbacterium iodinum have not been reported to be capable in the degradation of OPEOn. B. iodinum was the only Gram-positive bacterium. The diversity of the isolated strains from the green house of a pesticide factory is higher than the rice field and the drainage of NCU campus. In this study, we apply the oxygen consumption assay to evaluate the aerobic degradation of OPEOn. Depending on the oxygen consumption activity of the cells incubated with different substrates, the isolates are separated into three groups. Group I: the oxygen consumption activities on OPEOn and AEO8 are high, including Pseudomonas sp. TX1. Group II: the activity is high on OPEOn, but low on AEO8. Group III contains only one Gram-positive strain, B. iodinum, is the only strain in our isolates showed oxygen consumption activity toward ocylphenol, which is a recalcitrant compound and is normally detected in a variety of environments.
    Among the isolates, Pseudomonas sp. TX1 can grow on 0.05% to 20% of OPEOn with a specific growth rate of 0.34-0.44 hr-1. High-performance liquid chromatography–mass spectrometer analysis of OPEOn degraded metabolites revealed that strain TX1 was able to shorten the ethoxylate chain and produce octylphenol (OP). Furthermore, formation of the short carboxylate metabolites, such as carboxyoctylphenol polyethoxylates (COPEOn, n = 2, 3) and carboxyoctylphenol polyethoxycarboxylates (COPECn, n = 2, 3) began at the log stage, while octylphenol polyethoxycarboxylates (OPECn, n = 1-3) was formed at the stationary phase. All the short-ethoxylated metabolites, OPEOn, OPECn, COPEOn, and COPECn, accumulated when the cells were in the stationary phase. This study is the first report to demonstrate the formation of COPEOn and COPECn from OPEOn by an aerobic bacterium.

    中文摘要 ………………………………………………………… I Abstract……………………………………………………………III Table of Contents ……………………………………………… V List of Figures ……………………………………………… VIII List of Tables ………………………………………………… X Abbreviations ………………………………………………… XI 1. Introduction 1 1.1 Alkylphenol polyethoxylates ……………………… 1 1.1.1 Structure ………………………………………… 1 1.1.2 Application …………………………………… 2 1.2 Alkylphenol polyethoxylate degradation products 3 1.2.1 Behavior of apeon metabolites in environment ……………………………………………………………3 1.2.2 Physicochemical properties…………………… 4 1.2.3 Estrogenic activity…………………………… 5 1.2.4 Bioaccumulation …………………………………7 1.2.5 Human exposure……………………………………7 1.3 Biodegradation of alkylphenol polyethoxylates… 8 1.3.1 Bacterial strains……………………………… 9 1.3.2 Degradation mechanism………………………… 10 A. Ethoxylate chain…………………………………… 11 B. Alkyl chain…………………………………………… 12 1.4 Research aims…………………………………………… 13 1.5 Study Outline…………………………………………… 14 2. Materials and Methods……………………………… 15 2.1 Isolation………………………………………………………… 15 2.1.1 Sample collection……………………………… 15 2.1.2 Media…………………………………………… 15 2.1.3 Screening conditions and cultivation……… 16 2.1.4 Enrichment………………………………………… 16 2.2 Identification………………………………………… 17 2.2.1 Biolog breathprint……………………………… 17 2.2.2 16S rRNA gene sequencing……………………… 17 2.2.3 Phylogenetic analysis………………………… 17 2.3 Growth property……………………………………… 18 2.4 Oxygen consumption activity………………………… 18 2.5 Identification of metabolites from the biodegradation of OPEOn…………………………………… 18 2.5.1 Extraction………………………………………… 18 2.5.2 HPLC-MS determination………………………… 19 2.6 Quantification of metabolites……………………… 19 2.6.1 Calibration curve……………………………… 19 2.6.2 The effect of ethoxylate unit……………… 20 2.6.3 Quantification…………………………………… 21 2.7 Chemicals and instruments…………………………… 21 2.7.1 Chemicals……………………………………… 21 2.7.2 Instruments……………………………………… 21 3. Result…………………………………………… 23 3.1 Isolation and identification of OPEOn-degrading bacteria…………………………………………………………… 23 3.2 The diversity of the enriched isolates………… 24 3.3 Growth properties of OPEOn-degrading bacteria 25 3.4 Oxygen consumption activities of OPEOn-degrading bacteria…………………………………………………………… 26 3.5 Growth rate and degradation metabolites by Pseudomonas sp. and B. iodinum……………………………… 27 3.6 Growth of Pseudomonas sp. TX1 on OPEOn and related carbon source…………………………………………………… 27 3.7 Analysis of degradation metabolites formed by Pseudomonas sp. TX1…………………………………………… 28 3.8 Biodegradation kinetics of OPEOn in Pseudomonas sp. TX1………………………………………………………………… 29 4. Discussion…………………………………………… 31 4.1 The isolation and properties of OPEOn-degrading bacteria…………………………………………………………… 31 4.2 Degradation pathway of OPEOn in Pseudomonas sp. TX1 ……………………………………………………………………… 35 References………………………………………………………… 38 Figures…………………………………………………………… 45 Tables……………………………………………………………… 67 Appendix A. “Pseudomonas sp. TX1 grows on a wide range of octylphenol polyethoxylates concentrations and forms dicarboxylated metabolites” (submitted manuscript). 81

    Ahel M, Giger W., 1993a. Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. Chemosphere, 26, 1461 -1470.
    Ahel M, Giger W., 1993b. Partitioning of alkylphenols and alkylphenol polyethoxylates
    between water and organic solvents. Chemosphere, 26, 1471-147 8.
    Ahel, M., Giger, W., Schaffner, C., 1994. Behavior of Alkylphenol Polyethoxylate Surfactants in the Aquatic Environment .2. Occurrence and Transformation in Rivers. Water Research, 28, 1143-1152.
    Arai, H., Akahira, S., Ohishi, T., Maeda, M., Kudo, T., 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology, 144 ( Pt 10), 2895-903.
    Cespedes, R., Lacorte, S., Ginebreda, A., Barcelo, D., 2006. Chemical monitoring and occurrence of alkylphenols, alkylphenol ethoxylates, alcohol ethoxylates, phthalates and benzothiazoles in sewage treatment plants and receiving waters along the Ter River basin (Catalonia, N. E. Spain). Anal Bioanal Chem, 385, 992-1000.
    Cespedes, R., Lacorte, S., Ginebreda, A., Barcelo, D., 2008. Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut, 153, 384-92.
    Chen, H.J., Tseng, D.H., Huang, S.L., 2005. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresource Technology, 96, 1483-1491.
    Chen, H.J., Guo, G.L., Tseng, D.H., Cheng, C.L., Huang, S.L., 2006. Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. Journal of Environmental Management, 80, 279-286.
    Cheng, C.Y., Li, W.R., Chang, J.W., Wu, H.C., Ding, W.H., 2006. Synthesis and determination of dicarboxylic degradation products of nonylphenol polyethoxylates by gas chromatography-mass spectrometry. J Chromatogr A, 1127, 246-253.
    Crescenzi, C., Dicorcia, A., Samperi, R., Marcomini, A., 1995. Determination of nonionic polyethoxylate surfactants in environmental waters by liquid-chromatography electrospray mass-spectrometry. Analytical Chemistry, 67, 1797-1804.
    Di Corcia, A., Cavallo, R., Crescenzi, C., Nazzari, M., 2000. Occurrence and abundance of dicarboxylated metabolites of nonylphenol polyethoxylate surfactants in treated sewages. Environmental Science & Technology, 34, 3914-3919.
    Di Corcia, A., Costantino, A., Crescenzi, C., Marinoni, E., Samperi, R., 1998. Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environmental Science & Technology, 32, 2401-2409.
    Ding, W.H., Fujita, Y., Aeschimann, R., Reinhard, M., 1996. Identification of organic residues in tertiary effluents by GC/EI-MS, GC/CI-MS and GC/TSQ-MS. Fresenius Journal of Analytical Chemistry, 354, 48-55.
    Franska, M., Franski, R., Szymanski, A., Lukaszewski, Z., 2003. A central fission pathway in alkylphenol ethoxylate biodegradation. Water Res, 37, 1005-1014.
    Harris, C.A., Santos, E.M., Janbakhsh, A., Pottinger, T.G., Tyler, C.R., 2001. Nonylphenol affects gonadotropin levels in the pituitary gland and plasma of female rainbow trout. Environ. Sci. Technol. 35, 2909-2916.
    Hawrelak, M., Bennett, E., Metcalfe, C., 1999. The environmental fate of the primary degradation products of alkylphenol ethoxylate surfactants in recycled paper sludge. Chemosphere, 39, 745-52.
    Huang, S. L., Yang, C. J. Guo, G. L. and Chou, S. H. 2004. Isolation, identification and properties of bacterial strains degrading octylphenol polyethoxylates. Taiwan Journal of Agricultural Chemistry and Food Science 42: 356-365.
    Houde, F., DeBlois, C., Berryman, D., 2002. Liquid chromatographic-tandem mass spectrometric determination of nonylphenol polyethoxylates and nonylphenol carboxylic acids in surface water. J Chromatogr A, 961, 245-256.
    Jobling, S., Sheahan, D., Osborne, J.A., Matthiessen, P., and Sumpter, J.P., 1996. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem., 15, 194-202.
    Jobling, S and Sumpter, J.P., 1993. Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 27, 361
    John, D.M., White, G.F., 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida. J Bacteriol, 180, 4332-4338.
    Kawai, F., Kimura, T., Tani, Y., Yamada, H., Kurachi, M., 1980. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol, 40, 701-5.
    Lin, A.Y., Plumlee, M.H., Reinhard, M., 2006. Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: photochemical and biological transformation. Environ Toxicol Chem, 25, 1458-64.
    Liney, K.E., Hagger, J.A., Tyler, C.R., Depledge, M.H., Galloway, T.S., Jobling, S., 2006. Health effects in fish of long-term exposure to effluents from wastewater treatment works. Environ Health Perspect, 114 Suppl 1, 81-9.
    Lu, J., Jin, Q., He, Y., Wu, J., Zhao, J., 2008. Biodegradation of nonylphenol ethoxylates by Bacillus sp. LY capable of heterotrophic nitrification. FEMS Microbiol Lett, 280, 28-33.
    Lu, Y.Y., Chen, M.L., Sung, F.C., Wang, P.S., Mao, I.F., 2007. Daily intake of 4-nonylphenol in Taiwanese. Environ Int, 33, 903-10.
    Maguire, R.J., 1999. Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Water Qual. Res. J. Can., 34, 37–78.
    Maki, H., Masuda, N., Fujiwara, Y., Ike, M., Fujita, M., 1994. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Appl Environ Microbiol, 60, 2265-2271.
    Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., Hughes, R.J., Croley, T.R., March, R.E., Potter, T., 2001. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem, 20, 297-308.
    Montgomery-Brown, J., Drewes, J.E., Fox, P., Reinhard, M., 2003. Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res, 37, 3672-3681.
    Montgomery-Brown, J., Reinhard, M., 2003. Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environmental Engineering Science, 20, 471-486.
    Nguyen, M.H., Sigoillot, J.C., 1997. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation, 7, 369-375.
    Nichols, K.M., Snyder, E.M., Snyder, S.A., Pierens, S.L., Miles-Richardson, S.R., Giesy, J.P., 2001. Effects of nonylphenol ethoxylate exposure on reproductive output and bioindicators of environmental estrogen exposure in fathead minnows Pimephales promelas. Environ Toxicol Chem, 20, 510-22.
    Nielsen, A.T., Liu, W.T., Filipe, C., Grady, L., Jr., Molin, S., Stahl, D.A., 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol, 65, 1251-8.
    Nimrod, A.C., Benson, W.H., 1996. Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol, 26, 335-364.
    Nimrod, A.C., Benson, W.H., 1996. Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol, 26, 335-64.
    Nishio, E., Ichiki, Y., Tamura, H., Morita, S., Watanabe, K., Yoshikawa, H., 2002. Isolation of bacterial strains that produce the endocrine disruptor, octylphenol diethoxylates, in paddy fields. Bioscience Biotechnology and Biochemistry, 66, 1792-1798.
    Nishio, E., Yoshikawa, H., Wakayama, M., Tamura, H., Morita, S., Tomita, Y., 2005. Isolation and identification of Sphingomonas sp that yields tert-octylphenol monoethoxylate under aerobic conditions. Bioscience Biotechnology and Biochemistry, 69, 1226-1231.
    Pachura-Bouchet, S., Blaise, C., Vasseur, P., 2006. Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environ Toxicol, 21, 388-94.
    Petrovic, M., Barcelo, D., 2000. Determination of anionic and nonionic surfactants, their degradation products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Analytical Chemistry, 72, 4560-4567.
    Petrovic, M., Barcelo, D., 2001. Determination of anionic and nonionic surfactants, their degradation products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Analytical Chemistry, 72, 4560-4567.
    Porter, A.W., Hay, A.G., 2007. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol, 73, 7373-9.
    Rudling, L., and Solyom, P., 1974. The investigation of biodegradability of branched nonyl phenol ethoxylates. Water Res., 8:115–119.
    Santos, P.M., Benndorf, D., Sa-Correia, I., 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics, 4, 2640-52.
    Sato, H., Shibata, A., Wang, Y., Yoshikawa, H., Tamura, H., 2001. Characterization of biodegradation intermediates of non-ionic surfactants by matrix-assisted laser desorption/ionization-mass spectrometry 1. Bacterial biodegradation of octylphenol polyethoxylate under aerobic conditions. Polymer Degradation and Stability, 74, 69-75.
    Schmid, A., Benz, R., Schink, B., 1991. Identification of two porins in Pelobacter venetianus fermenting high-molecular-mass polyethylene glycols. J Bacteriol, 173, 4909-13.
    Scott, M.J., Jones, M.N., 2000. The biodegradation of surfactants in the environment. Biochim Biophys Acta, 1508, 235-51.
    Servos, M.R., 1999. Review of the aquatic tovicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual. Res. J. Canada, 34, 123-177.
    Sharpe, R.M., Fisher, J.S., Millar, M.M., Jobling, S., Sumpter, J.P., 1995. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect, 103, 1136-43.
    Sharpe, R.M., Skakkebaek, N.E., 1993. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet, 341, 1392-5.
    Sheahan, D. and Harries, J., 1992. Effect of Trace Organics on Fish, a joint study between The Directorate of Fisheries Research of the Ministry of Agriculture, Fisheries and Food, Brunel University and The Water Research Centre.
    Soto, A.M., Justicia, H., Wray, J.W., Sonnenschein, C., 1991. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect, 92, 167-73.
    Staples, C.A., Williams, J.B., Blessing, R.L., Varineau, P.T., 1999. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere, 38, 2029-2039.
    Strubel, V., Engesser, K.H., Fischer, P., Knackmuss, H.J., 1991. 3-(2-hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J. Bacteriol., 173, 1932-1937
    Swisher, R.D. (1987). Surfactant Biodegradation, 2nd ed. New York: M. Dekker.
    Tabira, Y., Nakai, M., Asai, D., Yakabe, Y., Tahara, Y., Shinmyozu, T., Noguchi, M., Takatsuki, M., Shimohigashi, Y., 1999. Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem, 262, 240-5.
    Tanghe, T., Dhooge, W., Verstraete, W., 1999. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol, 65, 746-751.
    Tanghe, T., Dhooge, W., Verstraete, W., 2000. Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 11, 11-9.
    Thiele, B., Gunther, K., Schwuger, M.J., 1997. Alkylphenol Ethoxylates: Trace Analysis and Environmental Behavior. Chem Rev, 97, 3247-3272.
    Toppari, J., Larsen, J.C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette, L.J., Jr., Jegou, B., Jensen, T.K., Jouannet, P., Keiding, N., Leffers, H., McLachlan, J.A., Meyer, O., Muller, J., Rajpert-De Meyts, E., Scheike, T., Sharpe, R., Sumpter, J., Skakkebaek, N.E., 1996. Male reproductive health and environmental xenoestrogens. Environ Health Perspect, 104 Suppl 4, 741-803.
    Turkovskava, O., L. Panchenko, A. Muratova, E. Dubrovskaya, and G. Shub. , 1996. Biodegradation of surfactant and mineral oils. International Biodeterioration and Biodegradation, 37, 250-255.
    White, G.F., 1993. Bacterial Biodegradation of Ethoxylated Surfactants. Pesticide Science, 37, 159-166.
    White, R., Jobling, S., Hoare, S.A., Sumpter, J.P., Parker, M.G., 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 135, 175-182.
    Ying, G.G., Williams, B., Kookana, R., 2002. Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environ Int, 28, 215-26.
    Zhao, J., Zhang, G., Qin, Y., Zhao, Y., 2006. Aerobic biodegradation of alkylphenol ethoxylates. Bioresour Technol, 97, 2478-80.

    QR CODE
    :::