跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉晏慈
LIU, YAN-CI
論文名稱: 探討P300事件關聯電位特徵用於分析隱藏訊息測驗之腦波資料的效果
A Thorough Test of ERP P300-based Features for Analyzing the EEG Data of a Concealed Information Test
指導教授: 段正仁
陳永儀
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 99
中文關鍵詞: 隱藏訊息測驗P300事件關聯電位腦波
外文關鍵詞: Concealed InformationTest, P300, Event related potential, EEG
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究顯示使用P300作為指標的隱藏訊息測驗(Concealed Information Test)可以有效鑑別知情與不知情的受試者。本研究旨在評估P300鋒間振幅(P300 peak-to-peak magnitude)用於偵測從模擬犯罪情境中獲得之犯罪訊息的效率。本研究包含兩個實驗。實驗一中受試者被要求執行一項模擬竊盜案,受試者必須假裝偷盜一個重要物品並且將之藏起來。實驗二中受試者被要求執行一項間諜活動,其中兩位受試者彼此會在一個指定地點見面,並且交接一件機密物品。受試者於是接受隱藏訊息腦波測謊來檢測其是否知道犯罪相關細節,而在測謊的過程中腦波會被記錄。接著腦波資料經過前處裡程序,包括0.3-50 Hz的帶通濾波、降低取樣頻率到250 Hz、利用人為子空間重建(Artifact Subspace Reconstruction)及獨立成分分析(Independent Component Analysis)來移除雜訊,再使用6 Hz低通濾波。然後使用自助重抽振幅差異法(Bootstrap Amplitude Difference)來比較受試者看到犯罪相關刺激與犯罪無關刺激時所產生的P300大小,對受試者進行有無罪分類,並計算四道犯罪訊息題目的鑑別率。結果顯示兩實驗的隱藏訊息腦波測謊獲得中等的鑑別率(.62-.81),代表P300鋒間振幅在本研究中並非一個穩定有效的鑑別特徵。


    The Concealed Information Test (CIT) with P300-based EEG examination has been reported of high performance in differentiating knowledgeable/non-knowledgeable subjects. This study evaluated the efficacy of the P300 peak-to-peak (p-p) magnitude in the detection of the guilty knowledge acquired during mock crime scenarios. Two experiments with different mock crime scenarios were conducted. The mock crime in Experiment 1 was a theft crime, in which participants pretended to steal a critical item and hide it to a designated place. The mock crime in Experiment 2 was an espionage scenario, in which two participants met each other at a specific place and exchanged a secret item. Participants received the CIT EEG examination for the test of guilty knowledge during which the EEGs were recorded. EEG was then preprocessed through a band-pass filter with passband in between 0.3-50 Hz, downsampled to 250 Hz, and undergone the Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA) to remove noise. Finally, after a further 6 Hz low-pass filtering, the Bootstrap Amplitude Difference (BAD) was used to compare the P300 peak-to-peak magnitudes of the probe and irrelevant conditions. If the P300 peak-to-peak magnitude of the probe condition was greater than that of the irrelevant condition, it was more likely that the participants should come from the guilty group. Otherwise, the participant might belong to the innocent group. The classification accuracy was then computed channel by channel across all subjects. The results showed only a moderate classification accuracy (.62-.81) and indicated that the P300 p-p magnitude might not be a suitable feature in the present study.

    Chinese Abstract i English Abstract ii Table of Contents iii List of Figures v List of Tables vii Chapter 1. Introduction 1 1.1 Polygraph 1 1.2 Question Technique 2 1.3 Measurement 4 1.4 Study Aim 7 1.5 P300-Based Concealed Information Test (CIT) 7 1.5.1 Stimulus Type 7 1.5.2 CIT Protocol 8 1.5.3 The Classification Principle of P300 Index 12 1.5.4 Design Ideas of the Experimental Procedure 16 Chapter 2. Materials and Methods 25 2.1 Participants 25 2.2 Procedures 25 2.3 Concealed Information Test (CIT) EEG Examination 28 2.3.1 CIT Protocol 28 2.3.2 Stimuli 29 2.3.3 Procedure 30 2.3.4 EEG Recording 32 2.4 Data Analysis 32 2.4.1 EEG Data Processing 32 2.4.2 Bootstrap Amplitude Difference (BAD) and Determination Criterion 33 2.4.3 Sensitivity, Specificity, and Classification Accuracy 35 Chapter 3. Result 36 3.1 Classification Accuracy 36 3.2 P300 in the Target Condition 37 3.3 Sensitivity and Specificity 41 3.4 The Histogram of Bootstrap Value 42 3.5 The Classification Accuracy Under Different Guilty Criterion 44 3.6 Feature Analysis 46 3.6.1 The Histogram of P300 Peak-to-Peak Magnitude 47 3.6.2 The Histogram of Latency 50 3.7 Bootstrap Value and Feature 53 3.7.1 The Bootstrap Value and P300 P-P Magnitude 53 3.7.2 The Bootstrap Value and Latency 54 3.8 P300 Event-Related Potentials (ERPs) 59 3.9 Data Quality of Experiment 1 and Experiment 2 70 Chapter 4. Discussions 72 Conclusions 79 Limitations 80 Some Practical Considerations for a CIT Experiment Paradigm 82 Bibliographies 84

    Allen, J. J., Iacono, W. G., & Danielson, K. D. (1992). The identification of concealed memories using the event-related potential and implicit behavioral measures: a methodology for prediction in the face of individual differences. Psychophysiology, 29(5), 504-522.
    Ben-Shakhar, G., & Dolev, K. (1996). Psychophysiological detection through the guilty knowledge technique: Effect of mental countermeasures. Journal of Applied Psychology, 81(3), 273-281. doi:10.1037/0021-9010.81.3.273
    Ben-Shakhar, G., & Elaad, E. (2002). The Guilty Knowledge Test (GKT) as an application of psychophysiology: Future prospects and obstacles. In M. Kleiner (Ed.), Handbook of polygraph testing (pp. 87-102). San Diego, CA, US: Academic Press.
    Courchesne, E., Kilman, B. A., Galambos, R., & Lincoln, A. J. (1984). Autism: Processing of novel auditory information assessed by event-related brain potentials. Electroencephalography & Clinical Neurophysiology: Evoked Potentials, 59(3), 238-248. doi:10.1016/0168-5597(84)90063-7
    Donchin, E. (1981). Surprise!… Surprise? Psychophysiology, 18(5), 493-513. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1981.tb01815.x. doi:10.1111/j.1469-8986.1981.tb01815.x
    Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann. Statist., 7(1), 1-26. Retrieved from https://projecteuclid.org:443/euclid.aos/1176344552. doi:10.1214/aos/1176344552
    Farwell, L. A. (2012). Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cognitive neurodynamics, 6(2), 115-154. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23542949
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311838/. doi:10.1007/s11571-012-9192-2
    Farwell, L. A., & Donchin, E. (1991). The truth will out: interrogative polygraphy ("lie detection") with event-related brain potentials. Psychophysiology, 28(5), 531-547.
    Farwell, L. A., Richardson, D. C., Richardson, G. M., & Furedy, J. J. (2014). Brain fingerprinting classification concealed information test detects US Navy military medical information with P300. Front Neurosci, 8, 410. doi:10.3389/fnins.2014.00410
    Gombos, V. A. (2006). The cognition of deception: the role of executive processes in producing lies. Genet Soc Gen Psychol Monogr, 132(3), 197-214.
    Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: an integrative review. Dev Neuropsychol, 35(2), 129-155. doi:10.1080/87565640903526504
    Honts, C. R., Raskin, D. C., & Kircher, J. C. (1994). Mental and physical countermeasures reduce the accuracy of polygraph tests. J Appl Psychol, 79(2), 252-259.
    Iacono, W. G. (2011). Encouraging the use of the Guilty Knowledge Test (GKT): What the GKT has to offer law enforcement. Memory Detection: Theory and Application of the Concealed Information Test. 12-24. 10.1017/CBO9780511975196.002.
    Karemaker, J. M. (2017). An introduction into autonomic nervous function. Physiol Meas, 38(5), R89-r118. doi:10.1088/1361-6579/aa6782
    Khan, J., Nelson, R., & Handler, M. (2009). An Exploration of Emotion and Cognition during Polygraph Testing. Polygraph, 38(3)
    Klein Selle, N., Verschuere, B., Kindt, M., Meijer, E., Nahari, T., & Ben-Shakhar, G. (2017). Memory detection: The effects of emotional stimuli. Biol Psychol, 129, 25-35. doi:10.1016/j.biopsycho.2017.07.021
    Labkovsky, E., & Rosenfeld, J. P. (2014). A novel Dual Probe Complex Trial Protocol for detection of concealed information. Psychophysiology, 51(11), 1122-1130. doi:10.1111/psyp.12258
    Levenson, R. W. (2014). The Autonomic Nervous System and Emotion. Emotion Review, 6(2), 100-112. Retrieved from https://doi.org/10.1177/1754073913512003. doi:10.1177/1754073913512003
    Lykken, D. T. (1959). The GSR in the detection of guilt. Journal of Applied Psychology, 43(6), 385-388. doi:10.1037/h0046060
    Lykken, D. T. (1998). A tremor in the blood: Uses and abuses of the lie detector.: New York: McGraw Hill.
    Marston, W. M. (1917). Systolic blood pressure symptoms of deception [Press release]
    Matsuda, I., Nittono, H., & Allen, J. J. B. (2012). The current and future status of the concealed information test for field use. Front Psychol, 3, 532-532. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23205018
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507001/.
    doi:10.3389/fpsyg.2012.00532
    Matsuda, I., Ogawa, T., & Tsuneoka, M. (2019). Broadening the Use of the Concealed Information Test in the Field. Front Psychiatry, 10, 24. doi:10.3389/fpsyt.2019.00024
    Meixner, J. & Rosenfeld, J. P. (2014). Detecting Knowledge of Incidentally Acquired, Real-World Memories Using a P300-Based Concealed-Information Test. Psychological science. 25. 10.1177/0956797614547278.
    Meixner, J. B., & Rosenfeld, J. P. (2010). Countermeasure mechanisms in a P300-based concealed information test. Psychophysiology, 47(1), 57-65. doi:10.1111/j.1469-8986.2009.00883.x
    Mertens, R., & Allen, J. J. (2008). The role of psychophysiology in forensic assessments: deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology, 45(2), 286-298. doi:10.1111/j.1469-8986.2007.00615.x
    National Research Council (2003). The Polygraph and Lie Detection. Committee to Review the Scientific Evidence on the Polygraph. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
    Orne, M. T. (1975). Implication of Laboratory Research for the Detection of Deception.
    Osugi, A. (2011). Daily application of the concealed information test: Japan. Memory Detection: Theory and Application of the Concealed Information Test. Cambridge: Cambridge University Press. p. 253–75. doi: 10.1017/CBO9780511975196.015
    Osugi, A., & Ohira, H. (2017). Emotional Arousal at Memory Encoding Enhanced P300 in the Concealed Information Test. Front Psychol, 8, 2334. doi:10.3389/fpsyg.2017.02334
    Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 118(10), 2128-2148. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17573239
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715154/.
    doi:10.1016/j.clinph.2007.04.019
    Raskin, D.C. (1986). The polygraph in 1986. Utah Law Review, NO. 1, 29-73.
    Ritter, W., & Vaughan, H. G., Jr. (1969). Averaged evoked responses in vigilance and discrimination: a reassessment. Science, 164(3877), 326-328. doi:10.1126/science.164.3877.326
    Rosenfeld, J. P., Angell, A., Johnson, M., & Qian, J. H. (1991). An ERP-based, control-question lie detector analog: algorithms for discriminating effects within individuals' average waveforms. Psychophysiology, 28(3), 319-335.
    Rosenfeld, J. P., Cantwell, B., Nasman, V. T., Wojdac, V., Ivanov, S., & Mazzeri, L. (1988). A modified, event-related potential-based guilty knowledge test. Int J Neurosci, 42(1-2), 157-161.
    Rosenfeld, J. P., & Labkovsky, E. (2010). New P300-based protocol to detect concealed information: resistance to mental countermeasures against only half the irrelevant stimuli and a possible ERP indicator of countermeasures. Psychophysiology, 47(6), 1002-1010. doi:10.1111/j.1469-8986.2010.01024.x
    Rosenfeld, J. P., Labkovsky, E., Winograd, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The Complex Trial Protocol (CTP): a new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45(6), 906-919. doi:10.1111/j.1469-8986.2008.00708.x
    Rosenfeld, J. P., Nasman, V. T., Whalen, R., Cantwell, B., & Mazzeri, L. (1987). Late Vertex Positivity in Event-Related Potentials as a Guilty Knowledge Indicator: A New Method of Lie Detection. International Journal of Neuroscience, 34(1-2), 125-129. Retrieved from https://doi.org/10.3109/00207458708985947. doi:10.3109/00207458708985947
    Rosenfeld, J. P., Shue, E., & Singer, E. (2007). Single versus multiple probe blocks of P300-based concealed information tests for self-referring versus incidentally obtained information. Biol Psychol, 74(3), 396-404. doi:10.1016/j.biopsycho.2006.10.002
    Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology, 41(2), 205-219. doi:10.1111/j.1469-8986.2004.00158.x
    Rosenfeld, J. P., Ward, A., Thai, M., & Labkovsky, E. (2015). Superiority of pictorial versus verbal presentation and initial exposure in the P300-based, complex trial protocol for concealed memory detection. Appl Psychophysiol Biofeedback, 40(2), 61-73. doi:10.1007/s10484-015-9275-z
    Sai, L., Lin, X., Rosenfeld, J. P., Sang, B., Hu, X., & Fu, G. (2016). Novel, ERP-based, concealed information detection: Combining recognition-based and feedback-evoked ERPs. Biol Psychol, 114, 13-22. doi:10.1016/j.biopsycho.2015.11.011
    Saxe, L., Dougherty, D., & Cross, T. (1985). The validity of polygraph testing: Scientific analysis and public controversy. American Psychological Association, 40, 355-366.
    Snyder, E., & Hillyard, S. A. (1976). Long-latency evoked potentials to irrelevant, deviant stimuli. Behavioral Biology, 16(3), 319-331. Retrieved from http://www.sciencedirect.com/science/article/pii/S0091677376914474. doi:https://doi.org/10.1016/S0091-6773(76)91447-4
    Soskins, M., Rosenfeld, J. P., & Niendam, T. (2001). Peak-to-peak measurement of P300 recorded at 0.3 Hz high pass filter settings in intraindividual diagnosis: complex vs. simple paradigms. Int J Psychophysiol, 40(2), 173-180.
    Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387-401. Retrieved from http://www.sciencedirect.com/science/article/pii/0013469475902631. doi:https://doi.org/10.1016/0013-4694(75)90263-1
    Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188. doi:10.1126/science.150.3700.1187
    Verschuere, B., Crombez, G., De Clercq, A., & Koster, E. H. (2005). Psychopathic traits and autonomic responding to concealed information in a prison sample. Psychophysiology, 42(2), 239-245. doi:10.1111/j.1469-8986.2005.00279.x
    Verschuere, B., Crombez, G., Koster, E. H. W., & De Clercq, A. (2007). Antisociality, underarousal and the validity of the Concealed Information Polygraph Test [Elsevier Science doi:10.1016/j.biopsycho.2006.08.002]. Retrieved
    Visu-Petra, G., Varga, M., Miclea, M., & Visu-Petra, L. (2013). When interference helps: increasing executive load to facilitate deception detection in the concealed information test. Front Psychol, 4, 146. doi:10.3389/fpsyg.2013.00146
    Walczyk, J. J., Igou, F. P., Dixon, A. P., & Tcholakian, T. (2013). Advancing lie detection by inducing cognitive load on liars: a review of relevant theories and techniques guided by lessons from polygraph-based approaches. Front Psychol, 4, 14. doi:10.3389/fpsyg.2013.00014
    Wasserman, S., & Bockenholt, U. (1989). Bootstrapping: Applications to Psychophysiology. Psychophysiology, 26(2), 208-221. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1989.tb03159.x. doi:10.1111/j.1469-8986.1989.tb03159.x
    Winograd, M. R., & Rosenfeld, J. P. (2011). Mock crime application of the Complex Trial Protocol (CTP) P300-based concealed information test. Psychophysiology, 48(2), 155-161. doi:10.1111/j.1469-8986.2010.01054.x
    Winograd, M. R., & Rosenfeld, J. P. (2014). The impact of prior knowledge from participant instructions in a mock crime P300 Concealed Information Test. Int J Psychophysiol, 94(3), 473-481. doi:10.1016/j.ijpsycho.2014.08.002
    Yamamura, T., & Miyata, Y. (1990). Development of the polygraph technique in Japan for detection of deception. Forensic Science International, 44(2), 257-271. Retrieved from http://www.sciencedirect.com/science/article/pii/037907389090256X. doi:https://doi.org/10.1016/0379-0738(90)90256-X

    QR CODE
    :::