| 研究生: |
彭婕妤 Chieh-yu Peng |
|---|---|
| 論文名稱: |
資產配置的學習效果與其實證研究 The learning effect of an asset allocation and its empirical study. |
| 指導教授: |
繆維正
Wei-cheng Miao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 短視近利權重 、資產配置 、動態規劃 |
| 外文關鍵詞: | asset allocation, myopic weight, dynamic programming |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討只有一個風險資產與一個無風險資產所構成的簡單的投資組合,隨著時間的變化,投資在風險資產上的權重(weight)應該如何選擇,才可以使投資者在投資期間做適當的資產配置,使投資者的期末期望效用最大化。在本文中,我們主要是探討投資人除了在期初做資產配置之外,在到期前的各期也可根據所獲得的先驗資訊,重新更改原有的投資組合。此外,我們運用動態規劃(dynamic programming)與貝式模型的觀念來學習投資在風險資產上的短視近利權重(myopic weight)。實證的部分採用臺灣加權指數、日本Nikkei 225指數與美國S&P 500指數的報酬率,觀察後驗分配的平均數、變異數與投資在風險資產上的短視近利權重隨著時間經過所產生的變化。
The purpose of this paper is to investigate a simple portfolio problem with one risky asset and one risk-free asset: how we choose the weight on the risky asset in order to maximize the expected utility.We consider an investor who rebalances his portfolio continually as more and more information is acquired till the end of the investment horizon. In particular,the investor learns about the parameter values via a Bayesian model and determines the portfolio weight by dynamic programming principle.Empirically,we adopt the return of Taiwan Stock Index,Nikkei 225 Index and S&P 500 index to see the mean and variance of the posterior distribution and the weight on the risky asset as time passes.
1. Bernardo, J.M. and Ramon, J.M. (1998). An Introduction to Bayesian Reference Analysis:Inference on the Ratio of Multinomial Parameters. The Statistician 47,101-135.
2. Box, G.E.P and Taio, G.C. (1973). Bayesian Inference in Statistical Analysis. Reading: Addison-Wesley.
3. Brennan, Michael J. (1998). The Role of Learning in Dynamic Portfolio Decisions. European Finance Review 1,295-306.
4. Brennan, Michael J., Schwartz,Eduardo S. and Lagnado, Ronald. (1997). Strategic Asset Allocation. Journal of Economic Dynamics and control 21,1377-1403.
5. Cornuejols, Gerard and Tutuncu, Reha. Optimization Method in Finance.
6. Cvitanic, Jaksa and Zapatero, Fernando. Introduction to The Economics and Mathematics of Financial Markets.
7. Gray, Philip. (2002). Bayesian Estimation of Financial Models. Accounting and Finance 42,111-130.
8. Hakansson, N.H. (1970). Optimal investment and consumption strategies under risk for a class of utility functions. Econometrica 38,587-607.
9. Jeffreys, H. (1961). Theory of Probability(3ed). Oxford: Clarendon Press.
10. Kass, R.E. (1990). Data-translated Likelihood and Jeffereys'' rule. Biometrika 77,104-114.
11. Liptser, R.S. and Shiryayev, A.N. (1977). Statistics of random processes. Chapter 10.
12. Merton, R.C. (1971). Optimal consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3,373-413.
13. Merton, R.C. (1990). Continuous-Time Finance. Blackwell, Oxford.
14. Mossin, J. (1968). Optimal Multi-period Portfolio Policies. Journal of Business,215-229.
15. Samuelson, Paul A. Lifetime Portfolio Selection by Dynamic Stochastic Programming. The Review of Economics and Statistics 51(3),239-246.
16. Vanguard Investment Counseling & Research. A Primer on Tactical Asset Allocation Strategy Evaluation.
17. Winkler, Robert L. (1973). Bayesian Models for Forecasting Future Security Prices. The Journal of Financial and Quantitative Analysis 8(3),387-405.
18. Winkler, Robert L. and Barry, Christopher B. (1975). A Bayesian Model for Portfolio Selection and Revision. Journal of Finance 30(3),179-192.
19. Samuel Kotz、吳喜之和謝邦昌 (2001). 現代貝式統計學及其應用,台灣知識庫.