跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴俊祐
Chun-Yu Tai
論文名稱: Attention-based STGNN with Long-Term Dependencies for Traffic Speed Prediction
指導教授: 孫敏德
Min-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 48
中文關鍵詞: 交通車速預測
外文關鍵詞: STGNN, Huber Loss
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著城市地區的發展,人口總數和密度不斷增加,
    導致都市化現象的形成。這使得交通網絡的規模擴大
    且結構變得複雜,進而加劇了交通擁塞問題。因此,
    準確預測交通速度對於城市交通網絡的管理和規劃至
    關重要。隨著現實道路複雜性的提高,如何整合空間
    和時間資訊以準確預測交通速度成為一個重要且具有
    挑戰性的研究課題。本研究提出了一種具有注意力機
    制的STGNN 模型,有效捕捉現實道路之間的複雜關
    係。我們使用 Huber 損失作為訓練損失函數以提高預
    測精度,並將 RMSNorm 用於替換Transformer 中的
    LayerNorm,以降低計算成本。最後,我們在兩個真實
    世界的交通速度資料集上對所提出的模型進行了實
    驗。實證研究結果顯示,我們的方法在交通速度預測
    方面優於當前領域中最先進的系統。


    Urbanization, characterized by the continuous growth of population and density
    in urban areas, has led to the expansion and complexity of transportation networks,
    exacerbating traffic congestion. Accurate traffic speed prediction is crucial for ef-
    fective traffic network management and planning. As the complexity of real-world
    roads increases, how to integrate spatial and temporal information for accurate traf-
    fic speed prediction has become a challenging research task. This study proposes
    a novel approach by introducing a novel spatial-temporal STGNN-based model to
    enhance the accuracy of traffic speed prediction. By employing an attention-based
    STGNN, we effectively capture the complex relationships among road segments in
    real-world scenarios. We utilize Huber loss as the training loss function to improve
    prediction accuracy. Finally, we replace LayerNorm in Transformer with RMSNorm
    to reduce computational costs. Using two real-world traffic speed datasets, we eval-
    uated the proposed model. The experimental results demonstrate that our method
    achieves superior performance compared to state-of-the-art traffic speed prediction
    works.

    Contents 1 Introduction 1 2 Related Work 4 2.1 Temporal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Spatial-Temporal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Spatial-Temporal Attention Models . . . . . . . . . . . . . . . . . . . . . . 6 3 Preliminary 7 3.1 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Root Mean Square Layer Normalization . . . . . . . . . . . . . . . 8 3.2 Masked Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Graph for Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Spatial-Temporal Attention Wavenet . . . . . . . . . . . . . . . . . . . . . 9 4 Design 11 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4.1 Dataset Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.4.2 The Long-term Features Stage . . . . . . . . . . . . . . . . . . . . . 16 4.4.3 The Traffic Speed Prediction Stage . . . . . . . . . . . . . . . . . . 18 5 Performance 24 5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 28 5.4.1 PEMS-BAY Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4.2 METR-LA Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.5 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Conclusion 32

    [1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
    arXiv preprint arXiv:1607.06450, 2016.
    [2] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spatially-aware graph
    neural networks for relational behavior forecasting from sensor data. arXiv preprint
    arXiv:1910.08233, 2019.
    [3] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia.
    Freeway performance measurement system: mining loop detector data. Transporta-
    tion research record, 1748(1):96–102, 2001.
    [4] Zhitang Chen, Jiayao Wen, and Yanhui Geng. Predicting future traffic using hidden
    markov models. In 2016 IEEE 24th international conference on network protocols
    (ICNP), pages 1–6. IEEE, 2016.
    [5] Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, and Xuan
    Song. Spatial-temporal-decoupled masked pre-training for spatiotemporal forecast-
    ing, 2024.
    [6] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling
    with recurrent neural networks, pages 37–45, 2012.
    [7] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statis-
    tical Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
    USA, 2001.
    [8] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick.
    Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
    conference on computer vision and pattern recognition, pages 16000–16009, 2022.
    [9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
    training by reducing internal covariate shift. In International conference on machine
    learning, pages 448–456. pmlr, 2015.
    [10] Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakon-
    stantinou, Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and
    its technical challenges. Communications of the ACM, 57(7):86–94, 2014.
    [11] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
    softmax. arXiv preprint arXiv:1611.01144, 2016.
    [12] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer:
    Propagation delay-aware dynamic long-range transformer for traffic flow prediction.
    In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
    4365–4373, 2023.
    [13] Youngjoo Kim, Peng Wang, and Lyudmila Mihaylova. Structural recurrent neu-
    ral network for traffic speed prediction. In ICASSP 2019-2019 IEEE International
    Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5207–5211.
    IEEE, 2019.
    [14] David Kitchin. Intelligent transportation systems. Transportation Planning and
    Technology, 26(3):213–229, 2003.
    [15] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Tem-
    poral convolutional networks for action segmentation and detection. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 156–165,
    2017.
    [16] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent
    neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926,
    2017.
    [17] Xiaolei Ma, Jiyu Zhang, Bowen Du, Chuan Ding, and Leilei Sun. Parallel architecture
    of convolutional bi-directional lstm neural networks for network-wide metro ridership
    prediction. IEEE Transactions on Intelligent Transportation Systems, 20(6):2278–
    2288, 2018.
    [18] Xianwei Meng, Hao Fu, Liqun Peng, Guiquan Liu, Yang Yu, Zhong Wang, and
    Enhong Chen. D-lstm: Short-term road traffic speed prediction model based on
    gps positioning data. IEEE Transactions on Intelligent Transportation Systems,
    23(3):2021–2030, 2020.
    [19] Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting
    multiple time series. arXiv preprint arXiv:2101.06861, 2021.
    [20] Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-training enhanced spatial-
    temporal graph neural network for multivariate time series forecasting. In Proceedings
    of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
    pages 1567–1577, 2022.
    [21] Zhipeng Shen, Yuanming Zhang, Jiawei Lu, Jun Xu, and Gang Xiao. Seriesnet: a
    generative time series forecasting model. In 2018 international joint conference on
    neural networks (IJCNN), pages 1–8. IEEE, 2018.
    [22] David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Murtaza
    Choudhury, and Alex Kai Qin. A survey on modern deep neural network for traffic
    prediction: Trends, methods and challenges. IEEE Transactions on Knowledge and
    Data Engineering, 34(4):1544–1561, 2020.
    [23] Chenyu Tian and Wai Kin Chan. Spatial-temporal attention wavenet: A deep learn-
    ing framework for traffic prediction considering spatial-temporal dependencies. IET
    Intelligent Transport Systems, 15(4):549–561, 2021.
    [24] Yan Tian, Kaili Zhang, Jianyuan Li, Xianxuan Lin, and Bailin Yang. Lstm-based
    traffic flow prediction with missing data. Neurocomputing, 318:297–305, 2018.
    [25] Yongxue Tian and Li Pan. Predicting short-term traffic flow by long short-term
    memory recurrent neural network. In 2015 IEEE international conference on smart
    city/SocialCom/SustainCom (SmartCity), pages 153–158. IEEE, 2015.
    [26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
    Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
    neural information processing systems, 30, 2017.
    [27] Jingyuan Wang, Fei Hu, and Li Li. Deep bi-directional long short-term memory
    model for short-term traffic flow prediction. In Neural Information Processing: 24th
    International Conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017,
    Proceedings, Part V 24, pages 306–316. Springer, 2017.
    [28] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia,
    and Jian Yu. Traffic flow prediction via spatial temporal graph neural network. In
    Proceedings of the web conference 2020, pages 1082–1092, 2020.
    [29] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
    Zhang. Connecting the dots: Multivariate time series forecasting with graph neural
    networks. In Proceedings of the 26th ACM SIGKDD international conference on
    knowledge discovery & data mining, pages 753–763, 2020.
    [30] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph
    wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121,
    2019.
    [31] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional
    networks: A deep learning framework for traffic forecasting. arXiv preprint
    arXiv:1709.04875, 2017.
    [32] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in
    Neural Information Processing Systems, 32, 2019.
    [33] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
    Gaan: Gated attention networks for learning on large and spatiotemporal graphs.
    arXiv preprint arXiv:1803.07294, 2018.
    [34] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph
    multi-attention network for traffic prediction. In Proceedings of the AAAI conference
    on artificial intelligence, volume 34, pages 1234–1241, 2020.

    QR CODE
    :::