| 研究生: |
蔡宗諭 Tsung-Yu Tsai |
|---|---|
| 論文名稱: |
無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究 Study of Binder-Free Cr-doped LiNi0.5Mn1.5O4/Carbon Fiber High Voltage Composite Cathode and Carbon Nanotube/Carbon Fiber Composite Anode for Lithium-Ion Battery Application |
| 指導教授: |
劉奕宏
Yi-Hung Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 碳纖維 、高電壓 、無黏合劑電極 、奈米碳管 、鋰離子電池 |
| 外文關鍵詞: | Carbon fiber, High voltage, Binder-free electrode, Carbon nanotube, Lithium ion battery |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電動汽車的與日俱增,具有高能量密度和功率密度的鋰離子電池愈來愈被重視。近期有文獻證實,透過摻雜定量的過渡金屬元素,能使LiNi0.5Mn1.5O4材料的費米能階提高,進而滿足高電壓的需求。此外為了滿足現代人對3C產品輕薄短小的要求,減少像是黏合劑和導電劑以減少電池的重量,且同時保持電池的容量與活性材料和電極間的黏著性都是常被探討的議題。本實驗結合 LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 活性物質與碳纖維,透過電沉積法與水熱法,並結合鍛燒與抽氣過濾合成無黏合劑LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 高電壓複合式正極材料。另一方面,透過電泳沉積與鍛燒開發出無黏合劑 CNT/CF 複合型負極材料。
正極材料的部分,從 XRD 的分析可得知,增加鍛燒時間可有效增強峰值強度,但同時也會因為氧缺失而造成 LixNi1-xO 雜質項的產生,而定量的鉻摻雜 (x≥0.2) 可以有效改善結晶性,進而完全去除雜質項。而從充放電測試中得知摻雜鉻的正極材料 (x=0.1- 0.4) 因 Cr-O 鍵的強結合能,降低在鍛燒時氧氣的損失,以致於在 4.0 V 處 (Mn3+) 展現出較窄的平台,進而抑制電容量快速衰退。其中當 x=0.2 時,LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 正極材料具有最理想的放電容量 (135 mAh/g),即使在 5 C 的電流速率下,仍表現出118 mAh/g 的放電容量及 87.4 % 的容量保持率,而在第200個循環後也仍保持 134.7 mAh/g 的放電容量及 97.6 % 的容量保持率,表明定量摻雜鉻確實可優化在高電壓充放電區間的循環性能。
負極材料的部份,根據 EDS 圖上均勻的分佈層可得知,奈米碳管確實均勻的披覆在碳纖維上。且從循環充放電與循環壽命測試可得知,跟原始的碳纖維相比,藉由 CNT 的修飾改善負極材料在高電流速率下容易快速衰退的問題,即便在 0.5 C 的速率下仍保持 283 mAh/g 的放電容量,並在100個循環後保持 344 mAh/g 的放電容量及 86 % 的容量保持率,表明CNT的修飾可以優化負極材料的放電電容,且改善在高電流速率下的電化學穩定性。
With increasing demands of large-scale electronic applications such as electric vehicles (EVs), lithium ion batteries (LIBs) with high energy density and power density are desired. Recent researches has confirmed that doping quantitative transition metal will increase the Fermi level of the spinel LiNi0.5Mn1.5O4 material, which can improve the cycle performance in high voltage. In addition, to meet the aforementioned requirement, an electrode design that can accommodate more active material loading while reduce additives such as binders and conductive agents without losing any capacity is therefore expected. In the current study, we aim to combine nickel-manganese-chromium based cathode materials and CFs, developing a binder-free LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 high voltage composite cathode by using electrochemical deposition together with hydrothermal reaction and suction filtration. On the other hand, we develop a binder-free carbon nanotube (CNT)/CF composite anode by using an electrophoretic deposition method.
For the LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 cathode material. From XRD experiment results, it is found that increasing the calcination time can improve crystal purity, but it also lose oxygen and turn into disproportionate spinel LiNi0.5Mn1.5O4 and LixNi1−xO, so we dope Cr to stabilize the spinel structure of LiNi0.5Mn1.5O4 with increasing crystallinity. The composite cathode demonstrates favorable electrochemical performance against high-voltage operation due to the stronger bonding energy of Cr–O. Among them, the LiCr0.2Ni0.4Mn1.4O4 cathode material exhibits the best cyclic and rate performance. It can deliver the discharge capacity of 135 mAh/g at 0.2 C rate. Even at 5 C rate, it still delivers over 87.4 % capacity retention compared to that of 0.2 C. Through long cycle test, the LiCr0.2Ni0.4Mn1.4O4 cathode material delivers the discharge capacitie of 135.7 mAh/g with 97.6 % capacity retention after 200 cycles.
In addition, the morphology of the CNT/CF composite has been examined using energy-dispersive x-ray spectroscopy, and the results indicate that a CNT layer uniformLy deposites on the CFs. The CNT/CF anode shows better performance than the CF anode in terms of specific capacity, cycling stability, and rate capability. Even at 0.5 C rate, it still delivers discharge capacitie of 283 mAh/g. Through long cycle test, the CNT/CF anode material indicates the discharge capacitiey of 344 mAh/g with 86 % capacity retention after 100 cycles.
[1] A. Väyrynen and J. Salminen, “Lithium Ion Battery Production”, J. Chem. Thermodynamics, vol. 46, pp. 80-85, 2011.
[2] 林幸慧 : 《鋰離子電池材料產業發展趨勢》,工研院產業科技國際策略發展所,2019。
[3] F. Saidani, F.X. Hutter, W. Selinger, Z. Yu, J.N. Burghartz, “A Lithium-Ion Battery Demonstrator for HEV Applications Featuring a Smart System at Cell Level”, International Systems Engineering Symposium, 2017.
[4] New Energy and Industrial Technology Development Organization.
https://www.nedo.go.jp/hyokabu/articles/200905hitachi/img/c01_1.jpg.
[5] M. S. Islam, C.A.J. Fisher, “Lithium and Sodium Battery Cathode Materials: Computational Insights into Voltage, Diffusion and Nanostructural Properties”, Royal Society of Chemistry, vol. 43, pp. 185-204, 2014.
[6] J. Lu and K.S. Lee, “Spinel Cathodes for Advanced Lithium Ion Batteries: A Review of Challenges and Recent Progress”, Materials Technology, vol. 31, 2016.
[7] K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, “LixCoO2 (0<x<1) : A New Cathode Material for Batteries of High Energy Density”, Materials Research Bulletin, vol. 15, pp. 783-789, 1980.
[8] P. Rozier, J. M. Tarascon, Journal of the Electrochemical Society, vol. 162, pp. 2490-2499, 1953.
[9] L.D. Dyer, B.S. Borie, and G.P. Smith, “Alkali Metal-Nickel Oxides of the Type MNiO2”, Journal of the American Chemical Society, pp. 1499-1503, 1954.
[10] Y. S. Meng and M.E.A. Dompablo, “First Principles Computational Materials Design for Energy Storage Materials in Lithium Ion Batteries”, Royal Society of Chemistry, vol. 2, pp. 589-609, 2009.
[11] A.K. Padhi, K.S. Najundaswamy, C. Masquelier, S. Okada, and J. B. Goodenoygh, “Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates”, Journal of the Electrochamical Society, vol. 144, pp. 1609-1613, 1997.
[12] C. Daniel, D. Mohanty, J. Li and D.L. Wood, “Cathode Materials Review”, AIP Conference Proceedings, vol. 1597, pp. 26-43, 2015.
[13] D. Moragn, A. Van der Ven, and G. Geder, “Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) Olivine Materials”, Electrochemical and Solid-State Letters, vol. 7, pp. 30-32, 2003.
[14] S. Soylu, “Electric Vehicles-the Benefits and Barriers”, InTechOpen, ISBN: 978-953-307-287-6, 2011.
[15] D. Tuite, “Understanding the Factors in the Lithium-Battery Equation”, Electronic Design, vol. 60, pp. 46-50, 2012.
[16] 張彥博,陳金銘,郭信良,鄭季汝 : 《鋰離子電池高容量負極材料技術》 ,工業材料雜誌267期,53-60頁,2009年。
[17] 呂承璋,鄭敬則,劉文龍,張志溢 : 《鋰離子電池高容量負極材料技術》,工業材料雜誌326期,52-61頁,2014年。
[18] Y. Matsumura, S. Wang and J. Mondori, “Interactions between Disordered
Carbon and Lithium in Lithium Ion Rechargeable Batteries”, Carbon, vol.
33, pp. 1457-1462, 1995.
[19] R. Yazami, “Surface Chemistry and Lithium Storage Capability of the
Graphite-Lithium Electrode”, Electrochimica Acta, vol.45, pp. 87-97, 1999.
[20] Y.P. Wu, E. Rahm and R. Holze, “Carbon Anode Materials for Lithium Ion Battery”, Journal of Power Sources, vol.114, pp. 228-236, 2002.
[21] M. Yoshio, R. J. Brodd, A. Kozawa, “Lithium-Ion Batteries”, Science and Technologies, ISBN: 978-0-387-34444-7, 2009.
[22] S.F. Lux, F. Schappacher, A. Balducci, S. Passerini and M. Winter, “Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries”, Journal of the Electrochemical Society, vol. 157, number 3, pp. 320-355, 2010.
[23] M. Yang and J. Hou, “Membranes in Lithium Ion Batteries”, Membranes, vol. 2, pp. 367-383, 2012.
[24] S. Chen, K. Wen, J. Fan, Y. Bando and D. Golberg, “Progress and Future Prospects of High-Voltage and High-Safety Electrolytes in Advanced Lithium Batteries: From Liquid to Solid Electrolytes”, Journal of Materials Chemistry, vol. 6, pp. 11631-11663, 2018.
[25] Y.H. Liu, H.H. Lin, Y.J. Tai, “Binder-Free Carbon Fiber-Based Lithium-Nickel-Manganese-Oxide Composite Cathode with Improved Electrochemical Stability against High Voltage: Effects of Composition on Electrode Performance”, Journal of Alloys and Compounds, vol. 735, pp. 580-587, 2018.
[26] M. Wagemaker, F.G.B. Ooms, E.M. Kelder, J. Schoonman, G.J. Kearley and F.M. Mulder, “Extensive Migration of Ni and Mn by Lithiation of Ordered LiMg0.1Ni0.4Mn1.5O4 Spinel”, Journal of the American Chemical Society, vol. 126, pp. 13526-13533, 2004.
[27] Y. Sun, Y. Yang and H. Zhan, “Synthesis of High Power Type LiMn1.5Ni0.5O4 by Optimizing Its Preparation Conditions”, Journal of Power Sources, vol. 195, pp. 4322-4326, 2010.
[28] T. Ohzuku and R.J. Brodd, “An Overview of Positive Electrode Materials for Advanced Lithium-Ion Batteries”, Journal of Power Sources, vol. 174, pp. 449-456, 2007.
[29] R. Santhanam and B. Rambabu, “Research Progress in High Voltage Spinel LiNi0.5Mn1.5O4 Material”, Journal of Power Sources, vol. 195, pp. 5442-5451, 2010.
[30] J.H. Kim, S.T. Myung and Y.K. Sun, “Molten Salt Synthesis of LiNi0.5Mn1.5O4 Spinel for 5 V Class Cathode Material of Li-Ion Secondary Battery”, Electrochimica Acta, vol. 49, pp. 219-227, 2004.
[31] T. Kozawa, D. Hirobe, K. Uehara and M. Naito, “Low Temperature Synthesis of LiNi0.5Mn1.5O4 Grains Using A Water Vapor-Assisted Solid-State Reaction”, Journal of Solid State Chemistry, vol. 263, pp. 94-99, 2018
[32] L. Zhou, D. Zhao and X.W. Lou, “LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries”, Angewandte Chemie International Edition, vol. 51, 2011.
[33] E. Zhao, L. Wei, Y. Guo, Y. Xu, W. Yan, D. Sun and Y. Jin, “Rapid Hydrothermal and Post-Calcination Synthesis of Well-Shaped LiNi0.5Mn1.5O4 Cathode Materials for Lithium Ion Batteries”, Journal of Alloys and Compounds, vol. 695, pp. 3393-3401, 2017.
[34] S. R. Li, C. H. Chen and J. R. Dahn, “Studies of LiNi0.5Mn1.5O4 as a Positive Electrode for Li-Ion Batteries: M3+ Doping (M = Al, Fe, Co and Cr), Electrolyte Salts and LiNi0.5Mn1.5O4/Li4Ti5O12 Cells”, Journal of the Electrochemical Society, vol. 160, number 11, pp. 2166-2175, 2013.
[35] W. Wang, H. Liu, Y. Wang, C. Gao and J. Zhang, “Effects of Chromium Doping on Performance of LiNi0.5Mn1.5O4 Cathode Material”, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 2066−2070, 2013.
[36] S. Wang, P. Li, L. Shao, K. Wu, X. Lin, M. Shui, N. Long, D. Wang and J. Shu, “Preparation of Spinel LiNi0.5Mn1.5O4 and Cr-doped LiNi0.5Mn1.5O4 Cathode Materials by Tartaric Acid Assisted Sol–Gel Method”, Ceramics International, vol. 41, pp. 1347-1353, 2015.
[37] H. Yang, K. Kwon, T.M. Devine and J.W. Evans, “Aluminum Corrosion in Lithium Batteries An Investigation using the Electrochemical Quartz Crystal Microbalance”, Journal of the Electrochemical Society, vol 147, number 12, pp. 4399-4407, 2000.
[38] M. Wang, M. Tang, S. Chen, H. Ci, K. Wang, L. Shi, L. Lin, H. Ren, J. Shan, P. Gao, Z. Liu, and H. Peng, “Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery”, Advanced Materials, vol. 29, 2017.
[39] Y. Meng, J. Xia, L. Wang, G. Wang, F. Zhu and Y. Zhang, “A Comparative Study on LiFePO4/C By In-Situ Coating with Different Carbon Sources for High-Performance Lithium Batteries”, Electrochimica Acta, vol. 261, pp. 96-103, 2018.
[40] L. Zhang, X. Qin, S. Zhao, A. Wang, J. Luo, Z.L. Wang, F. Kang, Zhiqun Lin, and Baohua Li, “Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries”, Advanced Materials, vol. 32, 2020.
[41] O. Toprakci, L. Ji, Z. Lin, H.A.K. Toprakci and X. Zhang, “Fabrication and Electrochemical Characteristics of Electrospun LiFePO4/Carbon Composite Fibers for Lithium-Ion Batteries”, Journal of Power Sources, vol. 196, pp. 7692-7699, 2011.
[42] B.S. Kang, Y.T. Sul, S.J. Oh, H.J. Lee and T. Albrektsson, “XPS, AES and
SEM analysis of recent dental implants”, Acta Biomaterialia, vol. 5, pp. 2222-2229, 2009.
[43] R. Kizil, J. Irudayaraj, and K. Seetharaman “Characterization of Irradiated
Starches by Using FT-Raman and FTIR Spectroscopy”, Journal of Agricultural Food Chemistry, vol. 50, pp. 3912-3918, 2002.
[44] I. M. Salin and J. C. Seferis, “Kinetic Analysis of High‐Resolution TGA Variable Heating Rate Data”, Journal of Applied Polymer Science, vol. 47, 1993.
[45] 胡啟章 :《電化學原理與方法》,ISBN : 9571131180,2011。
[46] K. Tang, X. Yu, J. Sun, H. Li and X. Huang, “Kinetic Analysis on LiFePO4 Thin Films by CV, GITT, and EIS”, Electrochimica Acta, vol. 56, pp. 4869-4875, 2011.
[47] L. Yao, M. Li, Q. Wu, Z. Dai, Y. Gu, Y. Li and Z. Zhang, “Comparison of Sizing Effect of T700 Grade Carbon Fiber on Interfacial Properties of Fiber/BMI and Fiber/Epoxy”, Applied Surface Science, vol. 263, pp. 326-333, 2012.
[48] C. L. Chiang and C. C. Ma, “Synthesis, Characterization and Thermal Properties of Novel Epoxy Containing Silicon and Phosphorus Nanocomposites By Sol–Gel Method”, European Polymer Journal, vol. 38, pp. 2219-2224, 2002.
[49] G.Y. Liu, X. Kong, Q.B. Wang, H.Y. Sun, B.S. Wang and Z.Z. Yi, “Low Temperature Solution Combustion Synthesis of High Performance LiNi0.5Mn1.5O4", Ceramics International vol. 40, pp. 6447-6452, June 2014.
[50] Y.J. Gu, Y. Li, Y.B. Chen, H.Q. Liu, “Comparison of Li/Ni Antisite Defects in Fd-3m and P4332 Nanostructured LiNi0.5Mn1.5O4 Electrode for Li-ion Batteries”, Electrochimica Acta, vol. 213, pp. 368-374, 2016.
[51] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, J. Yamaki and S. Gopukumara, “Electrochemical Behavior of LiM0.25Ni0.25Mn1.5O4 as 5 V Cathode Materials for Lithium Rechargeable Batteries”, Journal of the Electrochemical Society, vol. 156, pp. 246-252, 2009.
[52] R. Younesi, S. Malmgren, K. Edström and S. Tan, “Influence of Annealing
Temperature on the Electrochemical and Surface Properties of the 5-V Spinel Cathode Material LiCr0.2Ni0.4Mn1.4O4 Synthesized by A Sol–Gel Technique”, Journal of Solid State Electrochemistry, vol. 18, pp. 2157-2166, 2014.
[53] G.B. Zhong, Y.Y. Wang, Y.Q. Yu and C.H. Chen, “Electrochemical Investig-
-ations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5 V cathode materials for lithium ion batteries”, Journal of Power Sources, vol. 205, pp. 385-3931, 2012.
[54] M. Li, Y. Gu, Y. Liu, Y. Li and Z. Zhang, “Interfacial Improvement of Carbon Fiber/Epoxy Composites Using A Simple Process for Depositing Commercially Functionalized Carbon Nanotubes on the Fbers”, Carbon, vol. 52, pp. 109-121, 2013.