| 研究生: |
莊舒涵 Su-han Chuang |
|---|---|
| 論文名稱: |
導電高分子修飾奈米碳管承載Pt-Sn催化乙醇氧化研究 Pt-Sn on conducting polymer modified carbon nanotube for ethanol oxidation |
| 指導教授: |
諸柏仁
Po-jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 乙醇氧化反應 、陽極觸媒 、聚苯胺修飾之奈米碳管 、觸媒載體 、奈米金屬粒 、循環伏安法 |
| 外文關鍵詞: | Cyclic voltammetry, Nanoparticle catalysts, Anode Catalysts, Polyaniline Modified Carbon Nanotube, Catalyst Support, Ethanol Oxidation Reaction |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陽極觸媒的催化效能是影響直接乙醇燃料電池(Direct Ethanol Fuel cell, DEFC)輸出功率的最大因素。除了觸媒金屬外,支撐金屬的載體也影響觸媒的催化效能。目前常見之觸媒載體有碳黑與奈米碳管。然而奈米碳管表面石墨烯平滑的結構,不利於穩定奈米粒徑的金屬顆粒易於讓奈米粒子在反應中集結。許多研究已報導使用硝酸修飾奈米碳管表面,形成CNx(nitrogen-doped carbon (CNx) nanotubes)可以避免這些缺陷;另外也有許多研究開始使用導電高分子包覆奈米碳管表面來分散金屬顆粒,當鉑奈米粒子和其他過渡金屬固著在聚合物表面,觸媒可以展現出更優良的電子與質子的導電度、保持長時使用之熱穩定性、親水性和提高催化活性表面積。
本研究顯示以導電高分子聚苯胺(Polyaniline)修飾之奈米碳管(PANICNT)作為載體,可以大幅提高乙醇燃料氧化活性並緩解Pt、Pt-Ru與Pt-Sn等奈米金屬粒子於長時間使用後的聚集和金屬流失的問題。承載於PANICNT表面之Pt-Sn奈米粒子可均勻分佈於載體上並保持顆粒尺寸範圍從2.0至4.0 nm之間;相較之下,PtSn顆粒於奈米碳管上則顯示嚴重聚集現象,在Vucan XC-72載體上之分散性也同樣較差。這是因為聚苯胺高分子上之氮官能基能與鉑金形成Pt-N鍵結,有助於均勻金屬顆粒大小展現出高分散性。從循環伏安法實驗中,PtSn/PANICNT觸媒氧化乙醇所產生的電流密度(748.7 A g-1 Pt),較其他未聚苯胺修飾之載體呈現更高的活性。其乙醇氧化之最高電流密度較PtSn/CNT高出458.9 A g-1 Pt。在經過耐受性測試(ADTs)後依然保持了77.8 %的電流密度顯示此技術可提升觸媒的穩定度。這項研究證實了的Pt-Sn二元金屬承載於PANICNT觸媒對於乙醇的氧化可以使鉑金的活性面積提高和催化活性上升並增加其長時使用之穩定性。
進一步,本研究也探討在不同的合成條件下所製備PtSn/PANICNT觸媒的差異。這四種方法為EG-PtSn/PANICNT(以乙二醇為溶劑)、FA-PtSn/PANICNT(以甲酸為溶劑)、pH12-PtSn/PANICNT(以乙二醇為溶劑, pH=12)和R-PtSn/PANICNT(使用硼氫化鈉還原)。實驗結果發現,反應溶液之酸鹼度會影響觸媒金屬的承載以致於電化學測試結果較不佳,另外使用硼氫化鈉還原金屬會使觸媒金屬顆粒聚集嚴重,而單純使用乙二醇還原金屬可以使金屬粒子Pt-Sn分散最均勻。且利用循環伏安法實驗得到EG-PtSn/PANICNT顯現最好的電化學活性表面積以及乙醇氧化的催化活性。
Catalytic activity of ethanol oxidation reaction is the most critical property dictating ethanol fuel cell performance. In addition to the metal nano-particle, the support material which fixes the nano-catalysts also contributes to the catalytic activity. The most common and widely used catalyst support is carbon black and carbon nanotube. However, the nano-catalysts tend to aggregate during reaction on the smooth graphene-like surface. Recently, there has been numerous report of heterogeneous catalysis that uses nitric acid to functionalize carbon nano-tubes surface which circumvent these deficiencies by forming CNx(nitrogen-doped carbon (CNx) nanotubes. Wrapping carbon nanotube with conducting polymers was recently explored to disperse metallic particles. When metallic platinum and compounds of transition metals are immobilized in the conducting polymer layer, the catalysts system delivered high electronic and protonic conductance, durable thermal stability, higher hydrophilicity, larger specific surface area, and considerable increase in active surface area.
Current study demonstrated a novel support based on polyaniline-coated carbon nanotubes can substantially enhance ethanol oxidation activity and mitigate the problems of aggregation and leaching out related to Pt, Pt-Ru or Pt-Sn nano-catalysts. The Pt-Sn nanoparticle supported on PANICNT is sharply distributed with particle sizes ranging from 2.0 to 4.0 nm. For comparison, Pt-Sn particles loaded on bare CNT and XC-72 shows worse dispersion with larger particle size and lower surface area. This is attributed to the presence of strong Pt-N chelating bond between the nano-paticle with the nitrogen on polyaniline. The current densities derived from cyclovoltametry indicated PtSn/PANICNT yielded distinctively higher value (748.7 A g-1 Pt),which is 458.9 A g-1 Pt higher compared to PtSn/CNT without PANI functionalization. Through accelerated degradataion test(ADTs), the novel catalysts system maintains 77.8 % or the current output after 5000 cycles, thus demonstrated its superior electrochemical stability compared to other supports. This study confirms Pt-Sn binary catalysts support on PANICNT yields superior catalytic activity for ethanol oxidation, higher Pt utilization efficiency, and displayed much better life-time durability when compared to that of PtSn/CNT or PtSn/XC-72.
In second part of the work, we compared PtSn/PANICNT catalysts prepared by four different methods:EG- PtSn/PANICNT (ethylene glycol as solvent)、FA- PtSn/PANICNT(formic acid as solvent)、pH12- PtSn/PANICNT (ethylene glycol solvent at PH=12) and R- PtSn/PANICNT (NaBH4 as reducing agent). The result shows higher pH deteriorates the particle quality, while NaBH4 is too strong a reducing agent leading to particle aggregation. Ethylene glycol as a mild reducing agent, provided the best nanao-catalysts growth condition which lead to best Pt-Sn particle dispersion and most homogeneous particle size distribution. Cyclic voltammetry measurement shows EG- PtSn/PANICNT displayed the best electrochemical active surface area (ECSA)and highest catalytic activity for ethanol oxidation.
參考文獻
[1] Grove, W. R. "On voltaic series and the combination of gases by platinum" Phil. Mag. Ser., vol.14, pp.127-130, 1893.
[2] Mond, L.; Langer, C. "A new form of gas battery" Proc. R. Soc. Lond., vol.46, pp.296-304 1989.
[3] 許桓瑞; 陳祈彰; 鍾孝平; 張文振; 曹芳海. "傳統製造業跨入燃料電池產業研發與生產契機之探討" 工業材料雜誌, 第271期, 63-71頁, 2009.
[4] "http://energylab.snu.ac.kr/research.htm"
[5] "http://www.tfci.org.tw/Fc/class.asp"
[6] Delime, F.; Le´Ger, J.; Lamy, C. "Optimization of platinum dispersion in Pt–PEM electrodes: application to the electrooxidation of ethanol" Journal of Applied Electrochemistry, vol.28, pp.27-35, 1998.
[7] Zhou, W.; Zhou, Z.; Song, S.; Li, W.; Sun, G.; Tsiakaras, P.; Xin, Q. "Pt based anode catalysts for direct ethanol fuel cells" Applied Catalysis B: Environmental, vol.46, pp.273-285, 2003.
[8] Dupont, C.; Jugnet, Y.; Loffreda, D. "Theoretical Evidence of PtSn Alloy Efficiency for CO Oxidation" Journal of the American Chemical Society, vol.128, pp.9129-9136, 2006.
[9] Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Léger, J.-M. "Recent advances in the development of direct alcohol fuel cells (DAFC)" Journal of Power Sources, vol.105, pp.283-296, 2002.
[10] Iwasita, T.; Rasch, B.; Cattaneo, E.; Vielstich, W. "A sniftirs study of ethanol oxidation on platinum" Electrochimica Acta, vol.34, pp.1073-1079, 1989.
[11] Teresa Iwasita; Pastor, E. "A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum" Electrochimica Acta, vol.39, pp.531-537, 1994.
[12] Pastor, E.; Iwasita, T. "D/H exchange of ethanol at platinum electrodes" Electrochimica Acta, vol.39, pp.547-551, 1994.
[13] Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. "On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies" J. Electroanal. Chem., vol.563, pp.81-89, 2004.
[14] Hitmi, H.; Belgsir, E. M.; Léger, J.-M.; Lamy, C.; Lezna, R. O. "A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium" Electrochimica Acta, vol.39, pp.407-415, 1994.
[15] Wang, H.; Jusys, Z.; Behm, R. J. "Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study" Journal of Power Sources, vol.154, pp.351-359, 2006.
[16] Vigier, F.; Rousseau, S.; Coutanceau, C.; Leger, J.-M.; Lamy, C. "Electrocatalysis for the direct alcohol fuel cell" Topics in Catalysis, vol.40, pp.111-121, 2006.
[17] "http://www.engr.wisc.edu/news/archive/2009/Sep17.html"
[18] Ruban, A. V.; Skriver, H. L.; Nørskov, J. K. "Surface segregation energies in transition-metal alloys" Physical Review B, vol.59, pp.15990-16000, 1999.
[19] 鄭銘堯; 潘俊仁; 陳冠榮; 黃炳照. "燃料電池觸媒技術發展現況(上)" 工業材料雜誌, 第283期, 130-134頁, 2010.
[20] Min, M.-K.; Cho, J.; Cho, K.; Kim, H. "Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications" Electrochimica Acta, vol.45, pp.4211-4217, 2000.
[21] Babić, B. M.; Vračar, L. M.; Radmilović, V.; Krstajić, N. V. "Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction" Electrochimica Acta, vol.51, pp.3820-3826, 2006.
[22] Tang, W.; Lin, H.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E. W. "Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte" The Journal of Physical Chemistry C, vol.112, pp.10515-10519, 2008.
[23] Shao, M.; Peles, A.; Shoemaker, K. "Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity" Nano Letters, vol.11, pp.3714-3719, 2011.
[24] Shao, Y.; Liu, J.; Wang, Y.; Lin, Y. "Novel catalyst support materials for PEM fuel cells: current status and future prospects" Journal of Materials Chemistry, vol.19, pp.46-59, 2009.
[25] Shao, Y.; Yin, G.; Gao, Y. "Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell" Journal of Power Sources, vol.171, pp.558-566, 2007.
[26] Antolini, E. "Carbon supports for low-temperature fuel cell catalysts" Applied Catalysis B: Environmental, vol.88, pp.1-24, 2009.
[27] Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. "Carbons as supports for industrial precious metal catalysts" Applied Catalysis A: General, vol.173, pp.259-271, 1998.
[28] Rodríguez-reinoso, F. "The role of carbon materials in heterogeneous catalysis" Carbon, vol.36, pp.159-175, 1998.
[29] Aricò, A. S.; Srinivasan, S.; Antonucci, V. "DMFCs: From Fundamental Aspects to Technology Development" Fuel Cells, vol.1, pp.133-161, 2001.
[30] Anderson, M. L.; Stroud, R. M.; Rolison, D. R. "Enhancing the Activity of Fuel-cell Reactions by Designing Three-dimensional Nanostructured Architectures: Catalyst-modified Carbon−Silica Composite Aerogels" Nano Letters, vol.2, pp.235-240, 2002.
[31] Chan, K.-Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K. Y. "Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells" Journal of Materials Chemistry, vol.14, pp.505-516, 2004.
[32] Yu, J.-S.; Kang, S.; Yoon, S. B.; Chai, G. "Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter" Journal of the American Chemical Society, vol.124, pp.9382-9383, 2002.
[33] Chai, G. S.; Yoon, S. B.; Yu, J.-S.; Choi, J.-H.; Sung, Y.-E. "Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell" The Journal of Physical Chemistry B, vol.108, pp.7074-7079, 2004.
[34] Raghuveer, V.; Manthiram, A. "Mesoporous Carbons with Controlled Porosity as an Electrocatalytic Support for Methanol Oxidation" Journal of The Electrochemical Society, vol.152, pp.A1504-A1510, 2005.
[35] Raghuveer, V.; Manthiram, A. "Mesoporous Carbon with Larger Pore Diameter as an Electrocatalyst Support for Methanol Oxidation" Electrochemical and Solid-State Letters, vol.7, pp.A336-A339, 2004.
[36] Liu, Y.-C.; Qiu, X.-P.; Huang, Y.-Q.; Zhu, W.-T. "Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol" Journal of Power Sources, vol.111, pp.160-164, 2002.
[37] Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Baker, R. T. K. "Graphite Nanofibers as an Electrode for Fuel Cell Applications" The Journal of Physical Chemistry B, vol.105, pp.1115-1118, 2001.
[38] Downs, W. B.; Baker, R. T. K. "Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers" Journal of Materials Research, vol.10, pp.625-633, 1995.
[39] Boskovic, B. O.; Golovko, V. B.; Cantoro, M.; Kleinsorge, B.; Chuang, A. T. H.; Ducati, C.; Hofmann, S.; Robertson, J.; Johnson, B. F. G. "Low temperature synthesis of carbon nanofibres on carbon fibre matrices" Carbon, vol.43, pp.2643-2648, 2005.
[40] Park, C.; Baker, R. T. K. "Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 2. The Influence of the Nanofiber Structure" The Journal of Physical Chemistry B, vol.102, pp.5168-5177, 1998.
[41] Park, C.; Baker, R. T. K. "Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 3. The Effect of Chemical Blocking on the Performance of the System" The Journal of Physical Chemistry B, vol.103, pp.2453-2459, 1999.
[42] Gangeri, M.; Centi, G.; Malfa, A. L.; Perathoner, S.; Vieira, R.; Pham-Huu, C.; Ledoux, M. J. "Electrocatalytic performances of nanostructured platinum–carbon materials" Catalysis Today, vol.102–103, pp.50-57, 2005.
[43] Fangli, Y.; Hojin, R. "The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell" Nanotechnology, vol.15, pp.S596, 2004.
[44] Park, I.-S.; Park, K.-W.; Choi, J.-H.; Park, C. R.; Sung, Y.-E. "Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles" Carbon, vol.45, pp.28-33, 2007.
[45] Iijima, S. "Helical microtubules of graphitic carbon" Nature, vol.354, pp.56-58, 1991.
[46] 黃建盛 "奈米碳管簡介" 科學新天地, 第13期, 4-9頁, 2006.
[47] Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q. "Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell" Carbon, vol.40, pp.791-794, 2002.
[48] Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J. M.; Xanthopoulos, N.; Mathieu, H. J.; Viswanathan, B. "Carbon Nanotubes Generated from Template Carbonization of Polyphenyl Acetylene as the Support for Electrooxidation of Methanol" The Journal of Physical Chemistry B, vol.107, pp.2701-2708, 2003.
[49] Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. "A review of anode catalysis in the direct methanol fuel cell" Journal of Power Sources, vol.155, pp.95-110, 2006.
[50] Hable, C. T.; Wrighton, M. S. "Electrocatalytic oxidation of methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix" Langmuir, vol.7, pp.1305-1309, 1991.
[51] Kim, S.; Park, S.-J. "Electroactivity of Pt–Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods" Solid State Ionics, vol.178, pp.1915-1921, 2008.
[52] Wu, G.; Johnston, C. M.; Mack, N. H.; Artyushkova, K.; Ferrandon, M.; Nelson, M.; Lezama-Pacheco, J. S.; Conradson, S. D.; More, K. L.; Myers, D. J.; Zelenay, P. "Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells" Journal of Materials Chemistry, vol.21, pp.11392-11405, 2011.
[53] Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. "High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt" Science, vol.332, pp.443-447, 2011.
[54] Wu, G.; Li, L.; Li, J.-H.; Xu, B.-Q. "Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation" Carbon, vol.43, pp.2579-2587, 2005.
[55] Qu, B.; Xu, Y.; Deng, Y.; Peng, X.; Chen, J.; Dai, L. "Polyaniline/carbon black composite as Pt electrocatalyst supports for methanol oxidation: Synthesis and characterization" Journal of Applied Polymer Science, vol.118, pp.2034-2042, 2010.
[56] Wu, G.; Li, L.; Li, J.-H.; Xu, B.-Q. "Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films" Journal of Power Sources, vol.155, pp.118-127, 2006.
[57] Zhu, Z.-Z.; Wang, Z.; Li, H.-L. "Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation" Applied Surface Science, vol.254, pp.2934-2940, 2008.
[58] He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. "Polyaniline-Functionalized Carbon Nanotube Supported Platinum Catalysts" Langmuir, vol.27, pp.5582-5588, 2011.
[59] Antolini, E. "Catalysts for direct ethanol fuel cells" J. Power Sources, vol.170, pp.1-12, 2007.
[60] Camara, G. A.; de Lima, R. B.; Iwasita, T. "Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition" Electrochemistry Communications, vol.6, pp.812-815, 2004.
[61] Spinacé, E. V.; Neto, A. O.; Vasconcelos, T. R. R.; Linardi, M. "Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process" Journal of Power Sources, vol.137, pp.17-23, 2004.
[62] Colmati, F.; Antolini, E.; Gonzalez, E. R. "Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts" Journal of Power Sources, vol.157, pp.98-103, 2006.
[63] Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y.; Gan, L. M. "Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells" Journal of Power Sources, vol.149, pp.1-7, 2005.
[64] Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P. "Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts" Journal of Power Sources, vol.126, pp.16-22, 2004.
[65] Song, S. Q.; Zhou, W. J.; Zhou, Z. H.; Jiang, L. H.; Sun, G. Q.; Xin, Q.; Leontidis, V.; Kontou, S.; Tsiakaras, P. "Direct ethanol PEM fuel cells: The case of platinum based anodes" Int. J. Hydrogen Energy, vol.30, pp.995-1001, 2005.
[66] Zignani, S. C.; Baglio, V.; Linares, J. J.; Monforte, G.; Gonzalez, E. R.; Aricò, A. S. "Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations" Electrochimica Acta, vol.70, pp.255-265, 2012.
[67] Lamy, C.; Rousseau, S.; Belgsir, E. M.; Coutanceau, C.; Léger, J. M. "Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts" Electrochimica Acta, vol.49, pp.3901-3908, 2004.
[68] Vigier, F.; Coutanceau, C.; Perrard, A.; Belgsir, E. M.; Lamy, C. "Development of anode catalysts for a direct ethanol fuel cell" Journal of Applied Electrochemistry, vol.34, pp.439-446, 2004.
[69] Kim, J. H.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Choi, S. H.; Kim, W. B. "Influence of Sn content on PtSn/C catalysts for electrooxidation of C1-C3 alcohols: Synthesis, characterization, and electrocatalytic activity" Applied Catalysis B: Environmental, vol.82, pp.89-102, 2008.
[70] Higuchi, E.; Miyata, K.; Takase, T.; Inoue, H. "Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black" Journal of Power Sources, vol.196, pp.1730-1737, 2011.
[71] Silva, J. C. M.; De Souza, R. F. B.; Parreira, L. S.; Neto, E. T.; Calegaro, M. L.; Santos, M. C. "Ethanol oxidation reactions using SnO2@Pt/C as an electrocatalyst" Applied Catalysis B: Environmental, vol.99, pp.265-271, 2010.
[72] Zhang, X.; Zhu, H.; Guo, Z.; Wei, Y.; Wang, F. "Design and preparation of CNT@SnO2 core-shell composites with thin shell and its application for ethanol oxidation" International Journal of Hydrogen Energy, vol.35, pp.8841-8847, 2010.
[73] Shen, S. Y.; Zhao, T. S.; Xu, J. B. "Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell" International Journal of Hydrogen Energy, vol.35, pp.12911-12917, 2010.
[74] Tayal, J.; Rawat, B.; Basu, S. "Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell" International Journal of Hydrogen Energy, vol.37, pp.4597-4605, 2012.
[75] Lopes, T.; Antolini, E.; Colmati, F.; Gonzalez, E. R. "Carbon supported Pt–Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells" Journal of Power Sources, vol.164, pp.111-114, 2007.
[76] Lopes, T.; Antolini, E.; Gonzalez, E. R. "Carbon supported Pt–Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells" International Journal of Hydrogen Energy, vol.33, pp.5563-5570, 2008.
[77] Rodríguez Varela, F. J.; Savadogo, O. "Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications" Asia-Pacific Journal of Chemical Engineering, vol.4, pp.17-24, 2009.
[78] Zhou, W. J.; Song, S. Q.; Li, W. Z.; Zhou, Z. H.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Tsiakaras, P. "Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance" Journal of Power Sources, vol.140, pp.50-58, 2005.
[79] Liu, Z.; Guo, B.; Hong, L.; Lim, T. H. "Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation" Electrochemistry Communications, vol.8, pp.83-90, 2006.
[80] Colmati, F.; Antolini, E.; Gonzalez, E. R. "Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid" Electrochimica Acta, vol.50, pp.5496-5503, 2005.
[81] Colmati, F.; Antolini, E.; Gonalez, E. R. "Ethanol Oxidation on Carbon Supported Pt-Sn Electrocatalysts Prepared by Reduction with Formic Acid" Journal of The Electrochemical Society, vol.154, pp.B39-B47, 2007.
[82] Lim, D.-H.; Choi, D.-H.; Lee, W.-D.; Lee, H.-I. "A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability" Applied Catalysis B: Environmental, vol.89, pp.484-493, 2009.
[83] Kim, J. H.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Choi, S. H.; Kim, W. B. "Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: Synthesis, characterization, and electrocatalytic activity" Applied Catalysis B: Environmental, vol.82, pp.89-102, 2008.
[84] Li, L.; Huang, M.; Liu, J.; Guo, Y. "PtxSn/C electrocatalysts synthesized by improved microemulsion method and their catalytic activity for ethanol oxidation" Journal of Power Sources, vol.196, pp.1090-1096, 2011.
[85] Antolini, E.; Gonzalez, E. R. "Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium" Catalysis Today, vol.160, pp.28-38, 2011.
[86] Purgato, F. L. S.; Olivi, P.; Léger, J. M.; de Andrade, A. R.; Tremiliosi-Filho, G.; Gonzalez, E. R.; Lamy, C.; Kokoh, K. B. "Activity of platinum–tin catalysts prepared by the Pechini–Adams method for the electrooxidation of ethanol" Journal of Electroanalytical Chemistry, vol.628, pp.81-89, 2009.
[87] Zhou, Y. K.; He, B. L.; Zhou, W. J.; Li, H. L. "Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors" Journal of The Electrochemical Society, vol.151, pp.A1052-A1057, 2004.
[88] Tan, K. L.; Tan, B. T. G.; Kang, E. T.; Neoh, K. G. "X-ray photoelectron spectroscopy studies of the chemical structure of polyaniline" Physical Review B, vol.39, pp.8070-8073, 1989.
[89] Kang, E. T.; Neoh, K. G.; Tan, K. L. "Polyaniline with high intrinsic oxidation state" Surface and Interface Analysis, vol.20, pp.833-840, 1993.
[90] Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou; Sun, G.; Xin, Q. "Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells" The Journal of Physical Chemistry B, vol.107, pp.6292-6299, 2003.
[91] Wang, K.; Wang, H.; Pasupathi, S.; Linkov, V.; Ji, S.; Wang, R. "Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation" Electrochimica Acta, vol.70, pp.394-401, 2012.
[92] Wang, Q.; Sun, G. Q.; Cao, L.; Jiang, L. H.; Wang, G. X.; Wang, S. L.; Yang, S. H.; Xin, Q. "High performance direct ethanol fuel cell with double-layered anode catalyst layer" Journal of Power Sources, vol.177, pp.142-147, 2008.