跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許智銘
Chih-Ming Hsu
論文名稱: 中空弧形轉角光波導
Sharply Bent Hollow Waveguides
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 42
中文關鍵詞: 轉角波導中空波導
外文關鍵詞: Bending Waveguides, Hollow Waveguides
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們將從理論與實驗上討論以矽晶圓為基板的中空弧形全方向反射鏡轉角波導,並利用非晶相矽與二氧化矽以交互堆疊方式製作高反射率的布拉格反射鏡,將光有效的侷限在波導空氣核中。在此論文中,我們利用二維方式的時域有限差分法(Finite-Difference Time-Domain,FDTD),三維方式的有限差分光傳播法(Finite-Difference Beam Propagation Method,FD-BPM) 模擬出0度到90度的轉角損耗,並利用感應耦合電漿蝕刻機(Infuctively coupled plasma, ICP)在矽基板上蝕刻約50um x 50um的凹槽,電漿輔助化學氣相沉積系統(Plasma-Enhanced Chemical Vapor Depostition, PECVD)沉積六對Si/SiO2的多層膜,Si及SiO2的膜厚分別是0.111um及0.262um,最後透過晶片鍵結技術完成本論文所討論的中空弧形轉角光波導,此中空弧形轉角光波導將會操作在光波長為1550nm,由量測結果得知,轉角損耗隨著轉角角度增加而增加,轉角損耗最大值約為TE模態21dB、TM模態23dB,此時轉角角度為70度,當轉角角度大於70度時,轉角損耗過大,因而無法量測。


    In this work, we demonstrate theoretically and experimentally the air core bent waveguides composed of omni-directional reflectors on a silicon substrate. The amorphous silicon and the silicon oxide are used for high index-contrast Bragg reflectors. The transmission efficiency of the bent waveguides with bending angle for 0-90 degree is calculated by the two-dimensional finite-difference time-domain method and the three-dimensional beam propagation method. The 50um x 50um groove of the silicon substrate is etched by inductive coupled plasma (ICP). Plasma enhanced chemical vapor deposition (PECVD) is used to depositing six pairs of amorphous-silicon and silicon-oxide (0.111um and 0.262um) on the patterned substrate and another blank (100) silicon substrate. These two substrates were bonded to form the hollow waveguides. The bent waveguide operate in 1550 nm. In experimental results, bending loss increases with bending angle. The maximum bending loss for TE mode and TM mode is 21dB and 23dB, respectively.

    摘要............................II Abstract........................III 目錄............................IV 圖目錄..........................VI 第 一 章 導論...................1 1-1中空波導.....................1 1-2研究動機.....................4 1-3結論.........................5 第 二 章 中空波導設計原理.......6 2-1布洛赫波.....................6 2-2傳遞矩陣法...................12 2-3時域有限差分法...............14 2-4結論.........................22 第 三 章 模擬分析與結果.........23 3-1中空轉角波導設計與模擬.......23 3-2模擬結果分析.................28 3-3結論.........................30 第 四 章 元件製程與量測分析 ....31 4-1中空轉角波導製作.............31 4-2量測與結果分析...............35 4-3結論.........................40 第 五 章 結論...................41 參考文獻........................42

    [1] E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., 43, pp. 1783-1809,1964.
    [2] E. Garmire, T. McMahon, and M. Bass, "Propagation of infrared light in flexible hollow waveguide," Appl. Opt., 15, pp. 145-150,1976.
    [3] P. Yeh, A. Yariv, and E. Marom, "Statistical analysis of Bragg reflectors," J. Opt. Soc. Am., 68, pp. 1196-1202,1978.
    [4] M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., 49, pp. 13-15,1986.
    [5] J. J. Su and W. S. Wang, "Novel coherently coupled multisectional bending optical waveguide," Ieee Photonic Tech L, 14 (8), pp. 1112-1114,2002.
    [6] R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, "Design and fabrication of wide-angle abrupt bends on lithium niobate," Ieee J Sel Top Quant, 2 (2), pp. 215-220,1996.
    [7] K. Hirayama and M. Koshiba, "A NEW LOW-LOSS STRUCTURE OF ABRUPT BENDS IN DIELECTRIC WAVE-GUIDES," J. Lightwave Technol., 10 (5), pp. 563-569,1992.
    [8] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, "DESIGN AND APPLICATION OF VERY LOW-LOSS ABRUPT BENDS IN OPTICAL WAVE-GUIDES," Ieee J Quantum Elect, 30 (12), pp. 2827-2835,1994.
    [9] X. D. Cui, C. Hafner, R. Vahldieck, and F. Robin, "Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation," Opt. Express, 14 (10), pp. 4351-4356,2006.
    [10] L. M. Johnson and F.J.Leonberger, "Low-loss LiNbO waveguide bends with coherent coupling," Opt., pp. 111-113,1983.
    [11] Y. Sakurai, T. Miura, and F. Koyama, "Air core thickness dependence of propagation loss of slab hollow waveguide," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 43 (8B), pp. L1091-L1093,2004.
    [12] Y. Sakurai and F. Koyama, "Proposal of tunable hollow waveguide distributed Bragg reflectors," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 43 (5A), pp. L631-L633,2004.
    [13] T. Miura and F. Koyama, "Low-loss and polarization-insensitive semiconductor hollow waveguide with GaAs/AlAs multi-layer mirrors," Jpn J Appl Phys 2, 43 (1A-B), pp. L21-L23,2004.
    [14] H. Jelinkova, M. Nemec, J. Sulc, P. Cerny, M. Miyagi, Y. W. Shi, and Y. Matsuura, "Hollow waveguide delivery systems for laser technological application," Prog Quant Electron, 28 (3-4), pp. 145-164,2004.
    [15] D. J. Gibson and J. A. Harrington, "Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure," J Appl Phys, 95 (8), pp. 3895-3900,2004.
    [16] A. Yariv and P. Yeh, "Optical waves in crystals." (1984).
    [17] 李正中, "薄膜光學與鍍膜技術." (2004).
    [18] Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, 282 (5394), pp. 1679-1682,1998.
    [19] J. N. Winn, Y. Fink, S. H. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., 23 (20), pp. 1573-1575,1998.
    [20] M. H. Macdougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, "WIDE-BANDWIDTH DISTRIBUTED BRAGG REFLECTORS USING OXIDE GAAS MULTILAYERS," Electron Lett, 30 (14), pp. 1147-1149,1994.
    [21] J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves," J Comput Phys, 114 (2), pp. 185-200,1994.
    [22] Y. Kane, "Numerical solution of inital boundary value problems involving maxwell''s equations in isotropic media," IEEE Trans. Antennas Propagat., 14 (3), pp. 302-307,1966.
    [23] H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 mu m," Appl. Phys. Lett., 81 (24), pp. 4502-4504,2002.
    [24] Y. Park, Y. G. Roh, C. O. Cho, H. Jeon, M. G. Sung, and J. C. Woo, "GaAs-based near-infrared omnidirectional reflector," Appl. Phys. Lett., 82 (17), pp. 2770-2772,2003.
    [25] K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., 75 (24), pp. 3805-3807,1999.
    [26] S. S. Lo and C. C. Chen, "Air-core hollow optical waveguides with omnidirectional reflectors," Opt Eng, 45 (4), pp. -,2006.
    [27] 羅仕守, "新型中空光波導研製與應用," 國立中央大學光電科學研究所博士論文 (2005).
    [28] S. S. Lo, M. S. Wang, and C. C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express, 12 (26), pp. 6589-6593,2004.
    [29] J. B. Lasky, "Wafer Bonding for silicon-on-insulator technologies," Appl. Phys. Lett., 48, pp. 78-80,1986.
    [30] Q. Y. Tong, E. Schmidt, U. Gosele, and M. Reiche, "Hydrophobic Silicon-Wafer Bonding," Appl. Phys. Lett., 64 (5), pp. 625-627,1994.
    [31] U. Gosele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad, and K. Scheerschmidt, "Self-Propagating Room-Temperature Silicon-Wafer Bonding in Ultrahigh-Vacuum," Appl. Phys. Lett., 67 (24), pp. 3614-3616,1995.
    [32] M. Alexe and U. Gosele, "Wafer Bonding- Applicationand and Technology,." (Berlin, 2004).
    [33] S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu, and C. Y. Liu, "Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent," Ieee Photonic Tech L, 17 (12), pp. 2592-2594,2005.
    [34] Y. Chung and N. Dagli, "EXPLICIT FINITE-DIFFERENCE BEAM PROPAGATION METHOD - APPLICATION TO SEMICONDUCTOR RIB WAVE-GUIDE Y-JUNCTION ANALYSIS," Electron Lett, 26 (11), pp. 711-713,1990.
    [35] D. Yevick and B. Hermansson, "EFFICIENT BEAM PROPAGATION TECHNIQUES," Ieee J Quantum Elect, 26 (1), pp. 109-112,1990.

    QR CODE
    :::