跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志榮
Chih-Rung Chen
論文名稱: PECVD製備疏水硬質膜
Preparation of hydrophobic hard coating via PECVD
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 56
中文關鍵詞: 二氧化矽疏水硬度電漿
外文關鍵詞: silica, hardnes, hydrophobic, plasma
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用矽氧烷為單體,在RF鐘罩型反應器裡進行電漿輔助化學氣相沉積法(PECVD),目的為製備一具有良好機械性質且均勻之二氧化矽薄膜。內文分為二個主題探討,首先以二乙氧基二甲基矽烷(DEODMS)為前趨物在RF電漿源下製備二氧化矽薄膜,探討在不同的沉積位置、基材溫度及添加氧氣配比下沉積得到薄膜之性質差異,並利用電漿蝕刻基材或改質薄膜,改變薄膜表面的化學組成、硬度及接觸角等性質。接續,由上一主題選出較佳的電漿參數,探討使用各式矽氧烷單體為前趨物進行PECVD沉積時,薄膜性質之變化。
    結果發現,當薄膜沉積位置為電漿區時,以DEODSM為單體可在基材溫度提高至200℃時達到8H的硬度,同時在基材溫度300℃時提高至9H;藉著添加氧氣混合單體至反應器中,可在氧氣與單體體積流率比為2時將薄膜硬度提高至8H,因為此操作條件不需在高溫下進行,可以應用於不耐熱的高分子基材。此外,利用電漿表面改質及TMCS溶液處理,可以控制薄膜的表面為親水性(7°)或疏水性(100°),若使用氧電漿預先蝕刻PP基材,則沉積薄膜之接觸角可提升至122°。除了控制電漿參數外,選用甲基三乙氧基矽烷(MTEOS)代替DEODMS為單體可在不改變溫度或添加氧氣下,一步驟得到4H的硬質膜。在此同時研究單體結構對薄膜整體化學組成及表面元素分佈之影響,藉著控制各類似矽氧烷單體及氧氣的比例,可以控制製備之薄膜的表面能及硬度。


    Preparation of uniform silica films with high mechanical properties by plasma enhanced chemical vapor deposition (PECVD) at room temperature has been developed. At first, plasma parameters, different position, substrate temperature, and amount of oxygen were investigated using diethoxydimethylsilane (DEODMS) as monomer. In addition, these above films were treated by different plasma to study the influence of surface treatment on chemical structure and properties of films. On the other hand, oxygen plasma was also utilized to etch substrates to make rough surface. Finally, the films were deposited using four different monomers (tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), DEODMS, ethoxytrimethylsilane(EOTMS)) with the best plasma parameters found before.
    The results showed that the films with hardness 8H were obtained via increasing substrate temperature to 200°C at plasma region, and promote hardness to 9H at 300°C. With adding 20 sccm oxygen into the reactor, the dense and transparent film with 8H hardness was obtained even at room substrate temperature. These above films with further plasma treatment and dipping them into TMCS solution were able to change surface energy of films to have water contact angle from 79° to 7°~100°. On the other hand, water contact angle of films was promoted to 121° via etching plastic substrate by oxygen plasma.
    The films deposited using MTEOS and without adding oxygen had the largest hardness 4H among the four monomers. With increasing the amount of oxygen in all four monomers, the hardness of the films was increased, and the water contact angle of films was decreased.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖索引 vi 表索引 viii 第一章 前言 1.1 研究背景及文獻回顧 1 1.2 研究目的 4 第二章 實驗流程與儀器原理  2.1 實驗架構 6  2.2 流量校正 7  2.3 實驗試片前處理 8  2.4 PECVD沉積系統 9  2.5 實驗藥品 10  2.6 分析儀器及原理 11 第三章 結果與討論 3.1 不同電漿參數沉積二氧化矽薄膜 18 3.1.1沉積位置對膜材性質之影響 20 3.1.2基材溫度對膜材性質之影響 25 3.1.3氧氣添加量對膜材性質之影響 29 3.1.4膜材表面處理 34 3.1.5電漿蝕刻基材對膜材粗糙度及接觸角之影響 38 3.2 單體結構對電漿成膜之影響 41 3.2.1以DEODMS類似單體為前趨物沉積薄膜 41 3.2.2矽氧烷單體自身乙氧基數及添加氧氣之比較 45 第四章 結論 51 第五章 參考文獻 54

    1. Roualdes, S., A. Van der Lee, R. Berjoan, J. Sanchez, and J. Durand, Gas separation properties of organosilicon plasma polymerized membranes. Aiche Journal, 1999. 45(7):1566-1575.
    2. Teshima, K., H. Sugimura, Y. Inoue, and O. Takai, Gas barrier performance of surface-modified silica films with grafted organosilane molecules. Langmuir, 2003. 19(20):8331-8334.
    3. Brinker, C.J., A.J. Hurd, G.C. Frye, K.J. Ward, and C.S. Ashley, Sol-Gel Thin-Film Formation. Journal of Non-Crystalline Solids, 1990. 121(1-3):294-302.
    4. Teshima, K., Y. Inoue, H. Sugimura, and O. Takai, Synthesis of silica films on a polymeric material by plasma-enhanced CVD using tetramethoxysilane. Surface & Coatings Technology, 2003. 169:583-586.
    5. Lasorsa, C., P.J. Morando, and A. Rodrigo, Effects of the plasma oxygen concentration on the formation of SiOxCy films by low temperature PECVD. Surface & Coatings Technology, 2005. 194(1):42-47.
    6. Chang, C.P., C.S. Pai, and J.J. Hsieh, Ion and Chemical Radical Effects on the Step Coverage of Plasma Enhanced Chemical Vapor-Deposition Tetraethylorthosilicate Films. Journal of Applied Physics, 1990. 67(4):2119-2126.
    7. Pai, C.S. and C.P. Chang, Downstream Microwave Plasma-Enhanced Chemical Vapor-Deposition of Oxide Using Tetraethoxysilane. Journal of Applied Physics, 1990. 68(2):793-801.
    8. Inagaki, N., S. Tasaka, and T. Nakajima, Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from mixture of tetramethoxysilane and oxygen. Journal of Applied Polymer Science, 2000. 78(13):2389-2397.
    9. Inagaki, N., S. Tasaka, and H. Hiramatsu, Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen. Journal of Applied Polymer Science, 1999. 71(12):2091-2100.
    10. Inagaki, N., S. Tasaka, and M. Makino, Plasma polymer deposition from mixture of tetramethoxysilane and oxygen on PET films and their oxygen gas barrier properties. Journal of Applied Polymer Science, 1997. 64(6):1031-1039.
    11. Roualdes, S., N. Hovanian, A. Van der Lee, R. Berjoan, and J. Durand, Organic inorganic thin films deposited from diethoxydimethylsilane by plasma enhanced chemical vapor deposition. Journal of Non-Crystalline Solids, 1999. 248(2-3):235-246.
    12. Teshima, K., Y. Inoue, H. Sugimura, and O. Takai, Room-temperature deposition of high-purity silicon oxide films by RF plasma-enhanced CVD. Surface & Coatings Technology, 2001. 146:451-456.
    13. Teshima, K., Y. Inoue, H. Sugimura, and O. Takai, Reduction of carbon impurities in silicon oxide films prepared by rf plasma-enhanced CVD. Thin Solid Films, 2001. 390(1-2):88-92.
    14. Zhang, J.M., D.S. Wavhal, and E.R. Fisher, Mechanisms of SiO2 film deposition from tetramethylcyclotetrasiloxane, dimethyldimethoxysilane, and trimethylsilane plasmas. Journal of Vacuum Science & Technology A, 2004. 22(1):201-213.
    15. Bogart, K.H.A., S.K. Ramirez, L.A. Gonzales, G.R. Bogart, and E.R. Fisher, Deposition of SiO2 films from novel alkoxysilane/O-2 plasmas. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1998. 16(6):3175-3184.
    16. Bogart, K.H.A., N.F. Dalleska, G.R. Bogart, and E.R. Fisher, Plasma-Enhanced Chemical-Vapor-Deposition of Sio2 Using Novel Alkoxysilane Precursors. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1995. 13(2):476-480.
    17. Stout, P.J. and M.J. Kushner, Monte-Carlo Simulation of Surface Kinetics During Plasma-Enhanced Chemical-Vapor-Deposition of Sio2 Using Oxygen Tetraethoxysilane Chemistry. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1993. 11(5):2562-2571.
    18. Tochitani, G., M. Shimozuma, and H. Tagashira, Deposition of Silicon-Oxide Films from Teos by Low-Frequency Plasma Chemical Vapor-Deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1993. 11(2):400-405.
    19. 吳泰伯 and 許樹恩, X光繞射原理與材料結構分析. Vol. 20. 1996.
    20. NDL網站, http://www.ndl.org.tw/ndl2006/department/nmlab/device_cafm.html.
    21. Kim, M.T. and J. Lee, Characterization of amorphous SiC:H films deposited from hexamethyldisilazane. Thin Solid Films, 1997. 303(1-2):173-179.
    22. Croci, S., A. Pecheur, J.L. Autran, A. Vedda, F. Caccavale, M. Martini, and G. Spinolo, SiO2 films deposited on silicon at low temperature by plasma-enhanced decomposition of hexamethyldisilazane: Defect characterization. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2001. 19(5):2670-2675.
    23. A. Sonnenfeld, T.M. Tun, L. Zaj´ıˇckov´a, K.V. Kozlov, H.-E. Wagner, J.F. Behnke, and R. Hippler, Deposition Process Based on Organosilicon precursors in Dielectric Barrier Discharges at Atmospheric Pressure—A Comparison. Plasmas and Polymers, 2002. 6:237-266.
    24. Chen, L.Y. and F. Chau-Nan Hong, Diamond-like carbon nanocomposite films. Applied Physics Letters, 2003. 82(20):3526-3528.
    25. Zhou, M.L., Y.B. Fu, Q. Chen, and Y.J. Ge, Deposition of SiOx barrier films by O-2/TMDSO RF-PECVD. Chinese Physics, 2007. 16(4):1101-1104.
    26. Wavhal, D.S. and E.R. Fisher, Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005. 172(2):189-205.
    27. Kusano, Y., H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B.F. Sorensen, and H. Bindslev, Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement. International Journal of Adhesion and Adhesives, 2007. 27(5):402-408.
    28. Knizikevičius, R., Simulation of Si and SiO2 etching in CF4 plasma. Vacuum, 2008.
    29. Babayan, S.E., J.Y. Jeong, A. Schutze, V.J. Tu, M. Moravej, G.S. Selwyn, and R.F. Hicks, Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet. Plasma Sources Science & Technology, 2001. 10(4):573-578.
    30. Nowling, G.R., M. Yajima, S.E. Babayan, M. Moravej, X. Yang, W. Hoffman, and R.F. Hicks, Chamberless plasma deposition of glass coatings on plastic. Plasma Sources Science & Technology, 2005. 14(3):477-484.

    QR CODE
    :::