跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李傳傑
Chuan-Chieh Lee
論文名稱: 在一致的環狀串列上具自我穩定能力之交換配對
Self-Stabilizing Alternative Matching on uniform rings
指導教授: 黃興燦
Shing-Tsaan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 15
中文關鍵詞: 最大配對自我穏定配對交換配對
外文關鍵詞: maximum matching, alternative matching, self-stabilizing, matching
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們設計了一個空間最佳化的演算法來解決雙向鏈結串列中交換配對的問題。每個結點只用了一個指標,在系統穏定之後,在環狀鏈結中會一直存在 個配對,系統收斂所需的期望時間為O(n2)。


    In this paper, we design a space optimal self-stabilizing algorithm for alternative matching on synchronous bidirectional uniform rings of any size. Each node keeps a pointer. After the system stabilizes, there are always matching pairs on the ring. The expected time for convergence is O(n2)

    Abstract……………………………………………………1 1. Introduction……………………………………………….1 2. The Self-Stabilizing Alternative Matching algorithm......2 3. Correctness and Analysis………………………………....5 3.1 Correctness……………………………………………...5 3.2 Analysis……………………………………………….....9 4. Conclusion……………………………………………......11 References…………………………………………………...11

    References
    [1] E.W. Dijkstra, “Self-stabilizing systems in spite of distributed control”, Communications of the ACM 17, pp.643-644, 1974.
    [2] Z. Galil, “Efficient algorithms for finding maximum matchings in graphs”, ACM Computing Surveys, 18, 1, 1986.
    [3] S. Ghosh, A. Gupta, M. H. Karaata, and S. V. Pemmaraju, “A self-stabilizing algorithm for maximal matching on trees”, Technical Report TR-94-06, Department of Computer Science, The University of Iowa, Iowa City, 1994.
    [4] A. Gibbons, “Algorithmic Graph Theory”, Cambridge University Press, Cambridge, 1985.
    [5] Ralph P. Grimaldi “Discrete and Combinatorial Mathematics”, ADDISON-WESLEY, 1998.
    [6] T. Herman, “Probabilistic Stabilization”, Information Processing Letters, 35:63-67,1990.
    [7] S.T. Huang, “The fuzzy philosophers”, J. Rolim et al. (Eds): IPDPS 2000 Workshops, LNCS 1800, pp. 130-136, 2000, Springer-Verlag Berlin Heidelberg 2000.
    [8] S. C. Hsu and S.T. Huang, “A self-stabilizing algorithm for maximal matching”, Information Processing Letters, pp. 77-81, 1992,.
    [9] J. L. W. Kessels, “An exercise in proving self-stabilization with a variant function”, Information Processing Letters, v.29 n.1, p.39-42, 1988
    [10] S. Micali and V. V. Vazirani, “An algorithm for finding maximum matchings in general graphs”, 21st IEEE Annual Symposium on Foundations of Computer Science, 1980.

    QR CODE
    :::