跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沐為力
Metwally Ezzat Metwally Muhammad
論文名稱: 新型磷脂聚合物微胞於藥物輸送之應用
Novel Phospholipid Polymeric Micelle for Drug Delivery Application
指導教授: 黃俊仁
Chun-Jen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 磷脂聚合膠束藥物遞送
外文關鍵詞: polymeric micelles
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究上微胞廣泛應用在藥物方面在於其有良好的穩定性,可增強水溶性藥物在人體中的溶解度,以及增強水溶性藥物在正確療程中,其有效劑量能夠釋放在正確的時間及地點。因此,新型的雙離子高分子中的親水疏水性結構-可逆之膽鹼磷酸鹽(choline phosphate,CP)和長烷基鏈將在本研究中被陳述。在本研究中,我們合成2-{2(Methacryloyloxy)ethyldimethylammonium}ethyl n-octyl phosphate (MOP)單體,爾後再透過reversible addition–fragmentation chain transfer (RAFT) polymerization聚合形成高分子。此新型高分子提供仿生性質之均聚物,具有疏水端之核仁以及親水端之CP外殼將會在水溶液中自組裝形成微胞結構。我們利用核磁共振儀(1H nuclear magnetic resonance,NMR)、核磁共振儀(31P nuclear magnetic resonance,NMR) 、質譜儀(mass spectra,MS)來鑑定其微胞結構。透過螢光光譜用於獲得臨界微胞濃度(CMC),利用芘為探針在製備微胞之水溶液中測得臨界微胞濃度(CMC)。使用光動態散射儀(dynamic light scattering,DLS) 、原子力顯微鏡atomic force microscopy (AFM)和transmission electron microscopy (TEM).來鑑定其微胞大小,分布狀況以及其形狀。使用DLS測量ζ-potential values來測試微胞之穩定性。結果顯示,此新型微胞在200-300 nm時展現了非常低的微胞濃度:47 mg/L,本研究採用薑黃素與微胞作用形成一新型抗癌藥物,結果意外顯示,PMOP微胞可有效地增強薑黃素枝溶解度,當濃度為5 mg/mL時,溶解度可增強1.78×〖10〗^3倍;當濃度為50mg/ml時,溶解度可增強5.51×〖10〗^3倍。除此之外, NH3T3以及BFTC-905膀胱癌細胞將會使用在細胞毒性測試實驗中。而此微胞在濃度為50 mg/mL中仍具有相當良好之細胞生物存活率。本研究顯示當微胞負載薑黃素可降低癌症細胞之存活率,使微胞形成有潛力之藥物載體。此新型脂質微胞將為廣泛之生物醫學應用建立新的平台。
    關鍵字:磷脂質、高分子微胞、藥物輸送、薑黃素


    The emergence of micelles in pharmaceutical applications are widely studied due to their stability, their ability to enhance solubility of the water-insoluble drugs and effectively control the release of active ingredients in a way of right medication,
    right time, right place, and right dose. Herein, a new zwitterionic polymer based on an amphiphilic structure of a reverse choline phosphate (CP) and long alkyl chain was described in this work. 2- {2(Methacryloyloxy)ethyldimethylammonium}ethyl
    n-octyl phosphate (MOP) monomer was synthesized and polymerized via reversible addition–fragmentation chain transfer (RAFT) polymerization. The new polymer affords new biomimetic homopolymer that can self-assemble to form micelle structure exhibiting a hydrophobic core and hydrophilic CP shell in
    aqueous media. A variety of techniques are applied to confirm the synthesis and structure of the new homopolymer micelles including 1H nuclear magnetic resonance (NMR), 31P NMR, and mass spectra (MS). Fluorescence spectroscopy was applied to obtain the critical micelle concentration (CMC) of the prepared
    micelles in aqueous media using pyrene as probe. The micelle size, size distribution and shape were confirmed by dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The micelle stability was achieved by measuring ζ-potential values using DLS
    measurements. The results showed that the new micelles possess a very low CMC value of about 47 mg/L while the micelle size was as high as 200-300 nm. The anticancer drug - curcumin – was incorporated to the formed micelles in order to study the amphiphilic properties and in vitro release behavior. The results surprisingly indicated that the pMOP micelles can efficiently enhance the solubility of curcumin to 1.78 ×103 and 5.51×103 times when the pMOP concentrations were 5 mg/mL and 50 mg/mL, respectively. Additionally, the cytotoxicity of the blank micelles and Cur-loaded micelles are investigated on both
    NIH-3T3 fibroblasts normal cells and BFTC-905 bladder cancer cells to study the cell viability in the two cases. The blank micelles exhibited an excellent biocompatibility indicating its potential use as delivery systems even at very high concentration of 50 mg/mL. While the curcumin-loaded micelles have much better effect in reducing the cancer cell viability which makes the new micelle as a promising carrier for the delivery of poorly soluble drugs. The versatile new
    phospholipid micelle will establish new platforms for a wide range of biomedical applications.

    Table of contents - Abstract………………………………………………………………….. (III) - Acknowledgement ………………………………………………………. (V) - Table of contents ………………………………………………………. (VII) - List of figures …………………………………………………………… (X) - List of tables ………………………………………………………...... (XIII) - List of abbreviations ………………………………………………….. (XIV) - Chapter 1. Literature review……………………………………………… (1) 1.1. Introduction ……………………………………………………….. (1) 1.2. Cell membrane structure ………………………………………….. (2) 1.3. Polyzwitterions …………………………………………………… (4) 1.3.1. Poly(sulfobetaine) ………………………………………….. (5) 1.3.2. Poly(carboxybetaine)……………………………………….. (5) 1.3.3. Poly(phosphobetaine) ……………………………………..... (5) 1.3.3.1. Synthesis of CP-based materials………………….. (6) 1.3.3.2. Inverted Choline Phosphate (CP)………………… (7) 1.4. Radical polymerization …………………………………………… (9) 1.4.1. RAFT polymerization …………………………………… (10) 1.4.1.1. Mechanism of RAFT…………………………… (12) 1.4.1.2. Structure of RAFT agents……………………….. (14) 1.4.1.3. Classes of chain-transfer agents (CTA) ………… (15) 1.4.1.4. Compatibility of RAFT agents with different monomers ………………………………………. (16) 1.4.1.5. Choice of initiator ………………………………. (17) 1.5. Polymeric micelles ………………………………………………. (18) 1.5.1. Introduction ……………………………………………….. (18) 1.5.2. Micelle formation …………………………………………. (19) 1.5.3. Drug incorporation into micelles ………..………………... (20) 1.5.4. Applications of polymeric micelles ………………………..(21) 1.5.4.1. Micelles for anticancer therapy…………………. (22) 1.5.4.2. Solubility enhancement…………………………. (23) 1.5.5. Curcumin as anticancer agent …………………………….. (24) - Chapter 2: Research objectives …………………………………………. (27) - Chapter 3: Materials and Methods ……………………………………… (27) 3.1. Materials …………………………………………………………. (27) 3.2. Methods ………………………………………………………….. (27) 3.2.1. Preparation of OOP ……………………………………….. (27) 3.2.2. Preparation of MOP ………………………………………. (29) 3.2.3. RAFT polymerization for MOP …………………………... (29) 3.2.4. CMC determination ……………………………………….. (31) 3.2.5. Micelle formation and stability …………………………… (31) 3.2.6. Solubility enhancement and drug loading ………………... (32) 3.2.7. In vitro release study …………………………………….... (33) 3.2.8. Cytotoxicity study ……………………………………….... (33) 3.3. Characterization ………………………………………………….. (34) - Chapter 4: Results and discussion ……………………………………… (36) 4.1. Synthesis of MOP ……………………………………………….. (36) 4.2. Characterization of MOP monomer ……………………………... (39) 4.3. Characterization of pMOP ………………………………………. (45) 4.4. Determination of CMC ………………………………………….. (46) 4.5. Micelle size and Morphological characterization ……………….. (48) 4.6. Micelle stability measurements ………………………………….. (48) 4.7. Cytotoxicity study of pMOP……………………………………... (50) 4.8. Solubility enhancement of curcumin ……………………………. (51) 4.9. Cytotoxicity of xurxumin-based micelles………………………... (53) 4.10. In vitro release study …………………………………………….. (54) - Chapter 5: Conclusions and Future recommendations …………………. (56) - Bibliography ……………………………………………………………. (57)

    [1] C. Oerlemans, W. Bult, M. Bos, G. Storm, J.F.W. Nijsen, W.E. Hennink, Polymeric micelles in anticancer therapy: targeting, imaging and triggered release, Pharmaceutical research, 27 (2010) 2569-2589.
    [2] V.P. Torchilin, Structure and design of polymeric surfactant-based drug delivery systems, Journal of controlled release, 73 (2001) 137-172.
    [3] G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, J.C. Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery, J Control Release, 109 (2005) 169-188.
    [4] G. Gaucher, P. Satturwar, M.C. Jones, A. Furtos, J.C. Leroux, Polymeric micelles for oral drug delivery, Eur J Pharm Biopharm, 76 (2010) 147-158.
    [5] M.-C. Jones, J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers, European journal of pharmaceutics and biopharmaceutics, 48 (1999) 101-111.
    [6] Z. Sezgin, N. Yuksel, T. Baykara, Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs, Eur J Pharm Biopharm, 64 (2006) 261-268.
    [7] K.E. Wong, M.C. Mora, M. Skinner, S. McRae Page, G.M. Crisi, R.B. Arenas, S.S. Schneider, T. Emrick, Evaluation of PolyMPC-Dox Prodrugs in a Human Ovarian Tumor Model, Mol Pharm, 13 (2016) 1679-1687.
    [8] C. Giacomelli, L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S.P. Armes, A.L. Lewis, Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments, Biomacromolecules, 7 (2006) 817-828.
    [9] B. Yu, A.B. Lowe, K. Ishihara, RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy) ethyl phosphorylcholine, Biomacromolecules, 10 (2009) 950-958.
    [10] J.P. Xu, J. Ji, W.D. Chen, J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics, Macromol Biosci, 5 (2005) 164-171.
    [11] X. Zhao, Z. Zhang, F. Pan, T.A. Waigh, J.R. Lu, Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection, Langmuir, 24 (2008) 6881-6888.
    [12] S.-i. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent, Biomacromolecules, 6 (2005) 663-670.
    [13] K. Ishihara, Phospholipid polymers. Encyclopedia of Polymer Science and Technology, in, New York (NY): John Wiley & Sons, Inc, 2012.
    [14] S. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes, Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds, (1972) 7-47.
    [15] R. Zwaal, P. Comfurius, L. Van Deenen, Membrane asymmetry and blood coagulation, (1977).
    [16] F. Daemen, H. HART, C. van der Drift, L. VAN DEENEN, ACTIVITY OF SYNTHETIC PHOSPHOLIPIDS IN BLOOD COAGULATION, Thrombosis et diathesis haemorrhagica, 13 (1965) 194.
    [17] M. Hess, R.G. Jones, J. Kahovec, T. Kitayama, P. Kratochvíl, P. Kubisa, W. Mormann, R. Stepto, D. Tabak, J. Vohlídal, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006), Pure and Applied Chemistry, 78 (2006) 2067-2074.
    [18] A. Laschewsky, Structures and synthesis of zwitterionic polymers, Polymers, 6 (2014) 1544-1601.
    [19] N. Tarannum, M. Singh, Advances in synthesis and applications of sulfo and carbo analogues of polybetaines: a review, Reviews in Advanced Sciences and Engineering, 2 (2013) 90-111.
    [20] T. Alfrey Jr, H. Morawetz, E.B. Fitzgerald, R.M. Fuoss, Synthetic electrical analog of proteins1, Journal of the American Chemical Society, 72 (1950) 1864-1864.
    [21] Z. Zhang, T. Chao, S. Jiang, Physical, chemical, and chemical-physical double network of zwitterionic hydrogels, The Journal of Physical Chemistry B, 112 (2008) 5327-5332.
    [22] L. Carr, G. Cheng, H. Xue, S. Jiang, Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels, Langmuir, 26 (2010) 14793-14798.
    [23] S. Jiang, Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Advanced Materials, 22 (2010) 920-932.
    [24] R. Zwaal, H.C. Hemker, Blood cell membranes and haemostasis, Pathophysiology of Haemostasis and Thrombosis, 11 (1982) 12-39.
    [25] K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion, Biomaterials, 20 (1999) 1553-1559.
    [26] M. Kojima, K. Ishihara, A. Watanabe, N. Nakabayashi, Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety, Biomaterials, 12 (1991) 121-124.
    [27] L. Wu, Z. Guo, S. Meng, W. Zhong, Q. Du, L.L. Chou, Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility, ACS applied materials & interfaces, 2 (2010) 2781-2788.
    [28] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes, Polym J, 22 (1990) 355-360.
    [29] Y. Kadoma, N. Nakabayashi, E. Masuhara, J. Yamauchi, Synthesis and hemolysis test of polymer containing phosphorylcholine groups, Kobunshi Ronbunshu, 35 (1978) 423-427.
    [30] Y. Iwasaki, M. Ijuin, A. Mikami, N. Nakabayashi, K. Ishihara, Behavior of blood cells in contact with water‐soluble phospholipid polymer, Journal of biomedical materials research, 46 (1999) 360-367.
    [31] T. Nakaya, H. Toyoda, M. Imoto, Polymeric Phospholipid Analogues XIII. Synthesis and Properties of Vinyl Polymers Containing Phosphatidyl Choline Groups, Polymer journal, 18 (1986) 881-885.
    [32] A.L. Lewis, A.W. Lloyd, Biomedical Applications of Biomimetic Polymers: The Phosphorylcholine‐Containing Polymers, Biomimetic, Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues, (2012) 95-140.
    [33] G. Hu, S.S. Parelkar, T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers, Polymer Chemistry, 6 (2015) 525-530.
    [34] X. Yu, X. Yang, S. Horte, J.N. Kizhakkedathu, D.E. Brooks, ATRP synthesis of poly(2-(methacryloyloxy)ethyl choline phosphate): a multivalent universal biomembrane adhesive, Chem Commun (Camb), 49 (2013) 6831-6833.
    [35] G. Hu, T. Emrick, Functional Choline Phosphate Polymers, J Am Chem Soc, 138 (2016) 1828-1831.
    [36] V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
    [37] A.B. Lowe, C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, 32 (2007) 283-351.
    [38] K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45 (2012) 4015-4039.
    [39] N.V. Tsarevsky, K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials, Chem Rev, 107 (2007) 2270-2299.
    [40] G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
    [41] G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis, Polymer, 49 (2008) 1079-1131.
    [42] R.D. Puts, D.Y. Sogah, Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism, Macromolecules, 29 (1996) 3323-3325.
    [43] T. Le, G. Moad, E. Rizzardo, S. Thang, Inventors; polymerization with living characteristics, WO, 98 (1998) 01478.
    [44] R.T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps, Macromolecules, 33 (2000) 243-245.
    [45] D.J. Keddie, C. Guerrero-Sanchez, G. Moad, E. Rizzardo, S.H. Thang, Switchable reversible addition–fragmentation chain transfer (RAFT) polymerization in aqueous solution, N, N-dimethylacrylamide, Macromolecules, 44 (2011) 6738-6745.
    [46] G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process, Australian journal of chemistry, 58 (2005) 379-410.
    [47] G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process–a third update, Australian Journal of Chemistry, 65 (2012) 985-1076.
    [48] G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Accounts of chemical research, 41 (2008) 1133-1142.
    [49] J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process, Macromolecules, 31 (1998) 5559-5562.
    [50] A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS, Polymer Chemistry, 6 (2015) 5437-5450.
    [51] M. Samadi-Baboli, G. Favre, P. Canal, G. Soula, Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice, British journal of cancer, 68 (1993) 319.
    [52] R.A. Firestone, Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells, Bioconjugate chemistry, 5 (1994) 105-113.
    [53] A. Sharma, U.S. Sharma, Liposomes in drug delivery: progress and limitations, International journal of pharmaceutics, 154 (1997) 123-140.
    [54] Z. Ahmad, A. Shah, M. Siddiq, H.-B. Kraatz, Polymeric micelles as drug delivery vehicles, Rsc Advances, 4 (2014) 17028-17038.
    [55] F. Cao, Y. Liu, J. Xu, Y. He, B. Hammouda, R. Qiao, B. Yang, Probing Nanoscale Thermal Transport in Surfactant Solutions, Scientific reports, 5 (2015).
    [56] N.J. Turro, C. Chung, Photoluminescent probes for water soluble polymers. Pressure and temperature effects on a polyol surfactant, Macromolecules, 17 (1984) 2123-2126.
    [57] S.B. La, T. Okano, K. Kataoka, Preparation and characterization of the micelle‐forming polymeric drug indomethacin‐incorporated poly (ethylene oxide)–poly (β‐benzyl L‐aspartate) block copolymer micelles, Journal of pharmaceutical sciences, 85 (1996) 85-90.
    [58] B. Stewart, C.P. Wild, World cancer report 2014, World, (2016).
    [59] C. De Martel, J. Ferlay, S. Franceschi, J. Vignat, F. Bray, D. Forman, M. Plummer, Global burden of cancers attributable to infections in 2008: a review and synthetic analysis, The lancet oncology, 13 (2012) 607-615.
    [60] V.P. Torchilin, Targeted pharmaceutical nanocarriers for cancer therapy and imaging, The AAPS journal, 9 (2007) E128-E147.
    [61] M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery, Journal of pharmaceutical sciences, 92 (2003) 1343-1355.
    [62] M.M. Yallapu, M. Jaggi, S.C. Chauhan, Curcumin nanoformulations: a future nanomedicine for cancer, Drug Discov Today, 17 (2012) 71-80.
    [63] A. Goel, S. Jhurani, B.B. Aggarwal, Multi‐targeted therapy by curcumin: how spicy is it?, Molecular nutrition & food research, 52 (2008) 1010-1030.
    [64] H.H. Tønnesen, J. Karlsen, Studies on curcumin and curcuminoids, Zeitschrift für Lebensmittel-Untersuchung und Forschung, 180 (1985) 402-404.
    [65] M. Yokoyama, Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors, Journal of Experimental & Clinical Medicine, 3 (2011) 151-158.
    [66] Y. Chen, Z. Li, H. Wang, Y. Wang, H. Han, Q. Jin, J. Ji, IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer, ACS applied materials & interfaces, 8 (2016) 6852-6858.
    [67] T.S. Kale, A. Klaikherd, B. Popere, S. Thayumanavan, Supramolecular assemblies of amphiphilic homopolymers, Langmuir, 25 (2009) 9660-9670.
    [68] R.R. Ramireddy, P. Prasad, A. Finne, S. Thayumanavan, Zwitterionic amphiphilic homopolymer assemblies, Polymer chemistry, 6 (2015) 6083-6087.
    [69] M.P. Cashion, T.E. Long, Biomimetic design and performance of polymerizable lipids, Accounts of chemical research, 42 (2009) 1016-1025.
    [70] A. Puri, R. Blumenthal, Polymeric lipid assemblies as novel theranostic tools, Accounts of chemical research, 44 (2011) 1071-1079.
    [71] G. Hu, S.S. Parelkar, T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers, Polym. Chem., 6 (2015) 525-530.
    [72] H.K. Cho, H.-J. Cho, S. Lone, D.-D. Kim, J.H. Yeum, I.W. Cheong, Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy, Journal of Materials Chemistry, 21 (2011) 15486-15493.
    [73] A. Domínguez, A. Fernández, N. González, E. Iglesias, L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques, J. Chem. Educ, 74 (1997) 1227.
    [74] S. Farhangi, J. Duhamel, Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules, The Journal of Physical Chemistry B, 120 (2016) 834-842.
    [75] I. Astafieva, X.F. Zhong, A. Eisenberg, Critical micellization phenomena in block polyelectrolyte solutions, Macromolecules, 26 (1993) 7339-7352.
    [76] K. Kalyanasundaram, J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, Journal of the American Chemical Society, 99 (1977) 2039-2044.
    [77] L. Piñeiro, M. Novo, W. Al-Soufi, Fluorescence emission of pyrene in surfactant solutions, Advances in colloid and interface science, 215 (2015) 1-12.
    [78] M. Bustamante, N. Durán, M. Diez, Biosurfactants are useful tools for the bioremediation of contaminated soil: a review, Journal of soil science and plant nutrition, 12 (2012) 667-687.
    [79] L. Chen, X. Sha, X. Jiang, Y. Chen, Q. Ren, X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation, International journal of nanomedicine, 8 (2013) 73.
    [80] R. Yang, S. Zhang, D. Kong, X. Gao, Y. Zhao, Z. Wang, Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin, Pharm Res, 29 (2012) 3512-3525.
    [81] J. Kuchlyan, D. Banik, A. Roy, N. Kundu, N. Sarkar, Vesicles Formation by Zwitterionic Micelle and Poly-l-lysine: Solvation and Rotational Relaxation Study, The Journal of Physical Chemistry B, 119 (2015) 8285-8292.
    [82] M. Hamzeloo-Moghadam, N. Taiebi, M. Mosaddegh, B. Eslami Tehrani, S. Esmaeili, The effect of some cosolvents and surfactants on viability of cancerous cell lines, Research Journal of Pharmacognosy, 1 (2014) 41-45.

    QR CODE
    :::