| 研究生: |
楊子誼 Tzu-Yi Yang |
|---|---|
| 論文名稱: |
新型噴射磨料的開發及其應用於晶圓再生處理之研究 The Development of Novel Jet Abrasive and Application of Wafer Reclaim Process |
| 指導教授: |
顏炳華
Ping-Hua Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 精微噴射技術 、磨料噴射加工 、晶圓再生 、複合磨料 |
| 外文關鍵詞: | precision abrasive jet technology, wafer reclaim, novel compound abrasive |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業日益發展使得矽晶圓使用量大增,衍生原物料短缺之問題。產業對晶圓再生利用的需求性與日俱增,而傳統的晶圓再生製程尚有環境性、加工性等問題急需解決。本研究主要針對磨料噴射加工法於晶圓表面異質層移除的缺點進行改善,因傳統磨料噴射撞擊會造成表面不平整,徒增後續處理之困擾。本研究擬研發微彈性的新型複合磨料,其具有吸收衝擊能量特性,希望藉此能有效改善加工過度、表面粗糙度的問題,進而降低後續製程處理成本。
研究主要分為兩大部分,第一部份為複合磨料的製備及加工性探討:將加熱後之碳化矽(SiC)披覆於聚苯乙烯(PS)球狀顆粒以製成新型複合磨料,實驗證明在設定溫度200℃及披覆粒徑#3000時可獲得形貌完整、披覆均勻的複合磨料,藉由加工性測試可發現複合磨料確實降低裂痕衍生的機率。第二部分則利用田口實驗設計針對晶圓表面異質層處理進行實驗,探討各參數對表面粗糙度與材料移除率的影響。經實驗結果得知,較佳製程參數組合為:披覆磨料號數#3000SiC、衝擊角度30°、噴射距離70mm、噴射壓力0.4MPa及旋轉平台轉速250rpm。可於5分鐘內將晶圓表面異質層完全去除,經EDS檢測證實無其他元素殘留,且達到表面粗糙度0.118 μm Ra。由實驗證明本研究所開發的複合磨料可完全移除晶圓表面異質層且獲得較佳的表面粗糙度。
That the development of semiconductor industry flourishes vigorously makes the great use of Si wafer and that triggers the problems of original material shortage. The industry insistently demands the wafer reclamation, but the traditional wafer reclaiming process still has some environmental and processing problems. This research aims at improving the shortcomings of the abrasive jet machining working on the wafer surface hetero layer detachment, because the traditional abrasive jet machining could cause rough surface and afterward disturbance. The research plans to develop a new compound abrasive that has the absorption impact energy response in order to improve the problems of excessively processing and the surface roughness, then to reduce the cost of the following system regulation processing.
The study is divided into two parts. The first part focuses on the preparation of the new compound abrasive and the examination of the processing: The SiC is heated before coating on the polystyrene spherical pellet to make a new compound abrasive .The experiment proves that under the setting of temperature 200 ℃ and coating mesh size #3000 SiC, the result obtains the integrity of new compound abrasive .Based on the processing tests, the novel compound abrasive truly reduces the possibility of the cracks. The second part is to use the Taguchi method experiment on wafer surface hetero layer processing to discuss various parameters that influence the surface roughness and the material removal rate. The experiment proves that the good machining parameter combination is Abrasive mesh size 3000 SiC、Impact angle 30°、stand-off distance 70mm、Impact pressure 0.4 MPa and rotation platform speed 250 rpm. The wafer surface hetero layer is completely removed within 5 minutes and the EDS examination confirms that there are no other elements remained and the result also achieves the surface roughness 0.118 um Ra. The experiment proves that the novel compound abrasive can completely remove the hetero layer on wafer surface and obtain the better surface roughness.
[1].Chii-Rong Yanga, Po-Ying Chenb, Cheng-Hao Yanga, Yuang-Cherng Chiou, Rong-Tsong Lee“Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions” Sensors and Actuators A 119 (2005) 271–281
[2].J. Kang, M. Hadfield,“Examination of the material removal mechanisms during the lapping process of advanced ceramic rolling elements”, Wear 258 (2005) 2–12
[3].Ling Yin, E.Y.J. Vancoille, L.C. Lee, H. Huang, K. Ramesh, X.D. Liu,“High-quality grinding of polycrystalline silicon carbide spherical surfaces”, Wear 256 (2004) 197–207.
[4].Zhaowei Zhong,” Surface finish of precision machined advanced materials”, Journal of Materials Processing Technology 122 (2002) 173–178
[5].I.M. Hutchings, N.H. Macmillan and D.G. Rickerby, “Further studies of the oblique impact of a hard sphere against a ductile solid”, International Journal of Mechanical Sciences 23 (1981) 639–646.
[6].E. Belloy, A. Sayah and M.A.M. Gijs, “Powder blasting for three-dimensional microstruturing of glass”, Sensors and Actuators A 86 (2000) 231–237.
[7].P.J. Slikkerveer, P.C.P. Bouten, F.H. in’t Veld and H. Scholten, “Erosion and damage by sharp particles”, Wear 217 (1998) 237–250.
[8].F.H.in''t Veld,P.J. Slikkerveer“Towards prediction of flux effects in powder blasting nozzles”, Wear 215(1998)131-136
[9].E. Belloy, S. Thurre, E. Walckers, A. Sayah and M.A.M.Gijs, “The introduction of powder blasting for sensor and micro system applications”, Sensors and Actuators A 84 (2000) 330–337.
[10].M.W. Sin, J.G. Song, “Study on the photoelectrochemical etching process of semiconducting 6H-SiC wafer”, Materials Science and Engineering B 95 (2002) 191–194.
[11].H. Wensink, H. V. Jansen, J. W. Berenschot, M. C. Elwenspoek, “Mask materials for poeder blasting”, J Micromech. Microeng. 10 (2000) 175-180.
[12].H. Wensink, H. V. Jansen, J. W. Berenschot, M. C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769-774.
[13].S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek, A. Vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, J.Micromech.Microeng.11 (2001) 386-389.
[14].E. Belloy, A. Sayah, M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
[15].M. Wakuda, Y. Yamauchi, S. Kanzaki, ” Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 193–198.
[16].R. Balasubramaniama, J. Krishnana and N. Ramakrishnan, “A study on the shape of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102–106.
[17].J. A. Plaza, M. J. Lopez, A. Moreno, M. Duch, C. Cane, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310
[18].D. Jianxin, F. Yihua, D. Zeliang, S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
[19].D. S. Park, M. W. Cho, H. Lee, W. S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234-240.
[20].A. Sayah, V. K. Parashar, A. G. Pawlowski, M. A. M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90
[21].Christophe Yamahata, Frederic Lacharme, Yves Burri , Martin A.M. Gijs “A ball valve micropump in glass fabricated by powder blasting”, Sensor and Actuators B110 (2005) 1-7.。
[22].M. Junkar, B. Jurisevic, M. Fajdiga, M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
[23].Ghobeity, M.Papini , J.K Spelt,“Computer simulation of particle interference in abrasive jet micromachining”,Wear 263 (2007) 265-269
[24].H Getu , J K Spelt ,M Papini, “Cryogenically assisted abrasive jet micromachining of polymers” , Journal of Micromechanics And Micro Engineering 18(2008) 115010 (8pp)
[25].Takashi Mineta , Takehisa Takada , Eigi Makino , Takahiro Kawashima , Takayuki Shibata, “A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal” , Journal of Micromechanics And Micro Engineering . 19 (2009) 015031 (8pp)
[26].M.S. Phadke, “Quality engineering using robust design”, AT& T Laboratories (1989).
[27].F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, Neural Computing 7 (1995) 225–245.
[28].W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology 84 (1998) 122-129.
[29].J.H. Lau, C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing 233 (2000) 219–225.
[30].A. Mertol, “Application of the Taguchi Method to Chip Scale Package (CSP) Design”, IEEE Transactions on Advanced Packaging 23 (2000) 266–276.
[31].G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, (2001) 1–6.
[32].Y.S. Tarng, S.C. Juang and C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology 128 (2002) 1–6.
[33].J.M. Liang, P.J. Wang, “Self-learning control for injection molding based on neural networks optimization”, Journal of Injection Molding Technology 6 (2002) 58–72.
[34].J.A. Ghani, I.A. Choudhury and H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology 145 (2004) 84–92.
[35].B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram. 63(9) (1980) 574-581.
[36].D. B. Marshall, “Geometrical effects in elastic/plastic indentation”, J. Am. Ceram. 64 (1981) 57-60.
[37].P.D. Warren, “Determining the Fracture Toughness of Brittle Materials by Hertzian Indentation”, J Euro. ceram Soc 15 (1995) 385-394.
[38].翁維祥,「溶膠-凝膠法製備有機/無機奈米複合及超疏水材料之研究」,國立中央大學化學工程與材料工程研究所博士論文,2004。
[39].李輝煌,「田口設計的原理與實務」,高立出版社,2000。
[40].原著:須本一郎,譯著者:張明基,「苯乙烯系PS、AS、ABS樹脂」,復漢出版社,1995。