跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳培炘
Pei-Shin Chen
論文名稱: 利用實數運算核心之哈特萊轉換OFDM調變/解調變器
A Real-valued Computation Kernel DHT-based OFDM Modulator/Demodulator
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 快速傅立葉轉換離散傅立葉轉換快速哈特萊轉換離散哈特萊轉換正交分頻多工
外文關鍵詞: FFT, DFT, FHT, DHT, OFDM
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)調變技術廣泛的應用於寬頻通訊系統中。電路設計上的重要元件,反離散傅立葉轉換(Inverse Discrete Fourier Transform, IDFT)與離散傅立葉轉換(Discrete Fourier Transform, DFT)電路,無論在演算法、硬體架構上,皆已發展相當長的時間。然而DFT並非唯一的OFDM正交基底,在此我們提出利用離散哈特萊轉換(Discrete Hartley Transform, DHT)取代離散傅立葉轉換之傳輸架構,並使等效通道得以被對角化,接收端可使用一階頻域等化器來做通道等化。利用純實數運算特性,DHT可降低OFDM調變/解調之運算複雜度。
    硬體考量方面,本論文提出一個新的DCT-based DHT架構,配合所提出之DHT-OFDM系統,應用於無線區域網路系統之中。在符合標準的規範情況下,本電路僅需操作在20 MHz即可符合IEEE 802.11a/n的系統需求。本論文實現一個64點DHT為基礎之OFDM調變/解調變器,使用SMIMS VeriEnterprise Xilinx FPGA驗證電路功能,並利用0.18-μm製程做實現。晶片核心面積為0.928 0.935 mm2,包含輸出暫存器及除錯電路。晶片操作在20 MHz的頻率、1.8 V電壓下,晶片功率為28.95 mW。


    Orthogonal frequency division multiplexing (OFDM) technology has been widely used in wideband communication. The critical component of OFDM system, Inverse Discrete Fourier Transform (IDFT) and Discrete Fourier Transform (DFT), are well defined components due to its regular algorithms and architectures. Since DFT is not the only orthogonal basis for OFDM system, in this thesis, we proposed a new DHT-OFDM to replace the DFT-OFDM. The new architecture can diagonalize the baseband equivalent channel, the other words, the receiver can use a one-tap equalizer to equalize the channel. According to the pure real computation, DHT based OFDM modulator/demodulator can reduce the computing complexity in OFDM systems.
    In hardware implementation, we proposed a low hardware cost DCT-based DHT architecture. Combining the proposed DHT-OFDM algorithm, the DHT-OFDM modulator/demodulator is applied to wireless local area network (WLAN). The DHT architecture can operate at 20 MHz meeting IEEE 802.11a/n standard requirements. The proposed 64-point DHT is evaluated by SIMIS VeriEnterprise Xilinx FPGA development board, then the processor is designed in a 0.18-μm CMOS process. The core area is 0.928 0.935 mm2 including the output buffer and debug module. The chip power is 28.95 mW in 1.8 V supply voltage at the clock rate of 20 MHz.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 背景 1 1.2 研究動機 2 1.3 論文架構 3 第二章 DHT基底之無線OFDM傳輸系統 4 2.1 交疊現象 4 2.2 DHT-OFDM無線傳輸系統 9 2.2.1 DHT-OFDM系統傳送端 9 2.2.2 DHT-OFDM系統接收端 10 2.3 IEEE 802.11a/n相關規格 13 2.3.1 IEEE 802.11a規格 13 2.3.2 IEEE 802.11n規格 15 第三章 快速DHT演算法 17 3.1 Radix-2 DIF FHT演算法 18 3.2 Radix-4 DIF FHT演算法 20 3.3 Radix-8 DIF FHT演算法 24 3.4 DCT-based DHT演算法 27 3.5 Parallel DCT-based DHT演算法 30 3.6 演算法比較 33 第四章 DCT-based DHT硬體設計 35 4.1 快速DHT演算法硬體架構 35 4.2 DCT-based DHT硬體架構 38 4.3 Parallel DCT-based DHT架構 39 4.3.1 混合架構設計 39 4.3.2 Post-IDHT/DHT轉換電路 45 4.3.3 輸出暫存器與除錯電路 46 4.4 架構比較 47 第五章 晶片實現 48 5.1 設計流程 48 5.2 定點數分析 49 5.3 FPGA驗證 52 5.4 晶片設計 53 5.4.1 模擬驗證結果 53 5.4.2 晶片結論 54 5.5 硬體比較 56 第六章 結論與未來展望 58 6.1 結論 58 6.2 未來展望 58 附錄A. 128點Parallel DCT-based DHT 59 參考文獻 61

    [1] Marc Engels, Wireless OFDM systems, Kluwer Academic Publishers, Jan. 2002.
    [2] F. Xiong, “M-ary amplitude-shift keying OFDM system,” IEEE Trans. Communication, vol. 51, no. 10, pp. 1638-1642, Nov. 2006.
    [3] R. N. Bracewell, “Discrete Hartley transform, ” J Opt. Soc. Amer., vol. 73, no. 12, pp.1832-1835, 1984.
    [4] C. L. Wang and C. H. Chang, “A novel DHT-based FFT/IFFT processor for ADSL transceivers,” in Proc. ISCAS, vol. 1, pp. 51-54, Jun. 1999.
    [5] C. L. Wang and C. H. Chang, “A DHT-based FFT/IFFT processor for VDSL transceivers,” in Proc. ICASSP, vol. 2, pp. 1213-1216, May 2001.
    [6] R. N. Bracewell, “The fast Hartley transform,” Proceedings of the IEEE, vol. 72, no. 8, pp. 1010-1018, Aug. 1984.
    [7] T. C. Pao, “Design of a variable-length DHT-based FFT processor for VDSL,” Master Thesis, Institute of Electronics Engineering, National Taiwan University, Taipei City, Taiwan, Jul. 2003.
    [8] D. Wang, D. Liu, F. Liu and G. Yue, “A novel DHT-based ultra-wideband system,” in Proc. ISCIT, vol. 1, pp. 672-675, Oct. 2005.
    [9] R. Merched, “On OFDM and single-carrier frequency-domain systems based on trigonometric transforms,” IEEE Trans. Signal Process., vol. 13, no. 8, pp. 473-476, Aug. 2006.
    [10] C. R. Johnson, and W. A. Sethares, Telecommunication Breakdown, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.
    [11] A. C. Erickson and B. S. Fagin, “Calculating the FHT in hardware,” IEEE Trans. on Signal Processing, vol. 40, no. 6, pp. 1341-1353, Jun. 1992.
    [12] G. Heining and K. Rost, “Representation of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication,” Linear Algebra Appl., vol. 275-276, pp.225-248, 1998.
    [13] IEEE Wireless Local Area Networks, “Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications for high-speed physical layer in the 5 GHz band IEEE std. 802.11a,” 1999.
    [14] IEEE Wireless Local Area Networks, “Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: Enhancements for higher throughput,” IEEE P802.11nTM/D4.00.
    [15] J. I. Guo, G. M. Liu, and C. W. Jen, “A novel VLSI array design for the discrete Hartley transform using cyclic convolution,” in Proc. ISCAS, vol II, pp. II/501-II/504, Apr. 1994.
    [16] J.I. Guo, “An efficient design for one-dimensional discrete Hartley transform using parallel additions,” IEEE Trans. on Signal Processing, vol. 48, no. 10, Oct. 2000.
    [17] H.C. Chen, T.S. Chang, J.I. Guo and C.W. Jen, “The long length DHT design with a new hardware efficient distributed arithmetic approach and cyclic preserving partitioning,” IEICE Trans. Electron., vol. E88-C, no. 5, May 2005.
    [18] P. K. Meher, J. C. Patra and M. N. S. Swamy, “High-throughput memory-based architecture for DHT using a new convolutional formulation,” IEEE Trans. on Circuits and Systems II, vol. 54, pp. 606-610, Jul. 2007.
    [19] H. S. Malvar, “Fast computation of the discrete cosine transform and the discrete Hartley transform,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1484-1485, Oct. 1987.
    [20] Z. Cvetkovic and M. V. Popovic, “New fast recursive algorithms for the computation of discrete cosine and sine transform,” IEEE Trans. on Signal Process., vol. 40, no. 8, Aug. 1992.
    [21] Y. H. Chan, and W. C. Siu, “New fast discrete Hartley transform algorithm,” Electronics Letters, vol. 27, pp. 347-349, Feb. 1991.
    [22] S. S. Agaian, and O. Caglayan, “New fast Hartley transform with linear multiplicative complexity,” in Proc. ICIP, pp. 377-380, Oct. 2006.
    [23] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans. on Acoustics, Speech, and Signal Process., vol. ASSP-32, no. 6, Dec. 1984.
    [24] C. L. Lin, “Low power mixed-radix single-port memory-based FFT processors for DVB-T/H system applications,” Master Thesis, Institute of Electronics Engineering, National Central University, Jhongli City, Taoyuan County, Taiwan, Jul. 2003.
    [25] K. Maharatna, E. Grass and U. Jagdhold, “A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM,” IEEE Journal of Solid-state Circuits, vol. 39, no. 3, pp. 484-493, Mar. 2004.

    QR CODE
    :::