| 研究生: |
徐清琳 Ching-lin Hsu |
|---|---|
| 論文名稱: |
以氣相層析質譜儀偵測大氣氣膠中左玄葡萄醣與低分子量二元酸及其衍生化反應之研究 Derivatization procedures and determination of monosaccharide anhydrides and low-molecular-weight dicarboxylic acids in atmospheric aerosols by gas chromatography-mass spectrometry |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 左旋葡萄醣 、低分子量二元酸 、氣相層析質譜儀 、氣膠 、衍生化 |
| 外文關鍵詞: | low-molecular-weight dicarboxylic acids, monosaccharide anhydrides, derivatization, aerosol, GC/MS |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
左旋葡萄醣(levoglucosan)與低分子量二元酸(low-molecular weight dicarboxylic acids)是大氣氣膠中常見且含量較高的水溶性有機碳化合物(water soluble organic carbons, WSOCs),本研究將以不同衍生化方法搭配氣相層析質譜儀(GC/MS)對這兩類分析物進行衍生化方法之研究與偵測方法之開發。
本研究之第一目標,是以矽烷化衍生法將大氣氣膠中常見的三種複羥基類化合物,左旋葡萄醣、甘露聚醣、半乳聚醣衍生為低極性高揮發度的衍生物,同時搭配具有高靈敏度和良好分離效果的氣相層析質譜儀來對大氣環境進行分析檢測。衍生化研究以添加不同比例的促進劑(TMCS)至衍生化試劑(BSTFA, MSTFA)中,來探討不同配方衍生化試劑對最終衍生化產物的影響。研究結果顯示三個分析物無法完全衍生的主因乃是因為分子中具有三個相鄰的羥基(OH)所帶來的立體障礙而影響,然而隨著促進劑比例、衍生反應之溫度與時間的增加亦可使分析物增加完全衍生化之比例。最佳衍生化條件:溫度80℃,反應時間60分鐘,衍生化試劑BSTFA添加1% TMCS,未完全衍生化產物(bis-O-TMS)比例分別是半乳聚醣23%,甘露聚醣29%,左旋葡萄醣10%。在檢測上主要是偵測分析物完全衍生化之產物(tris-O-TMS)為主,而在上述衍生反應研究中可知未完全衍生化之產物仍佔有相當大的比例,本研究在定量檢測上將未完全衍生化產物加入計算,其結果與完全衍生化產物的定量比較皆小於11%。
本研究的第二目標,是以離子對試劑直接高溫衍生法對低分子量二元酸進行衍生化研究與偵測方法之開發,並觀察衍生化產物在質譜儀產生的斷裂情形。衍生化研究是以不同長度之碳鏈與陰離子的四烷基銨鹽類離子對試劑,來比較不同離子對試劑對分析物衍生化效果之影響,結果顯示以含氫氧根之四丁基銨鹽(TBA-OH)對於二元酸分析物的衍生化效果最佳,而最佳線上衍生化條件:注射埠溫度300℃,離子對試劑濃度為20 mM溶於甲醇中。在前處理步驟上,本實驗採用固相萃取法來取代減壓溶縮法,結果在固相萃取中真實樣品的添加回收率介在67-86%,精密度(RSD)為6-13%,說明本實驗的偵測方法具有良好的回收率與再現性,而本實驗所開發的偵測方法與傳統方法(Kawamura’s method)以Student’s t-test程序來比較實驗結果之差異,計算所得tcalculated為1.4498,小於95%的信心區間(confidence level)五自由度(degrees of freedom)下ttable值2.571,說明此二種方法用於檢測低分子量二元酸在95%的信心區間無明顯差異亦證明本實驗所開發之偵測方法的可行性。
Recent investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, cloud formation and precipitation. Mono- saccharide anhydrides and low-molecular weight dicarboxylic acids are the two most important groups of WSOCs.
The first part of this study is determination the three most commonly monosaccharide anhydrides (levoglucosan, mannosan and galactosan) in atmospheric aerosols using gas chromatography-mass spectrometry (GC-MS). Various silylating agents, mainly trimethylsilylating agents (TMS), were compared, and the effects of various contents of trimethyl- chlorosilane (TMCS, as a stimulator) were evaluated to optimize the conditions for detecting these compounds in aerosol samples. Differe- nces among the abundances of the derivatives were caused by the sterical hindrance of three hydroxyl groups in the structures of monosaccharide anhydrides. The effects of the reaction time and temperature were also examined. The optimal reaction time and temperature were 60 min and 80?C with 1% TMCS. Under these conditions, the percentages of formation of bis-O-TMS derivatives (as by-products) were 23%, 29% and 10% for galactosan, mannosan and levoglucosan, respectively. The concentrations of galactosan, mannosan and levoglucosan in particles of smoke samples ranged from 29 to 88 ng/m3, 23 to 69 ng/m3 and 77 to 380 ng/m3, respectively; and in particles of atmospheric aerosols ranged from 0.06 to 0.75 ng/m3, n.d. to 0.49 ng/m3 and 1.6 to 132 ng/m3, respectively. Levoglucosan was the dominant MAs detected in both type of samples. Less than 10% quantitation difference was obtained when bis-O-TMS derivatives were included in the calculation.
The second part of this study is application of on-line derivatization technique to determine low-molecular weight dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The technique involves direct derivatization in the GC injector using a large-volume sample device with tetrabutylammonium hydroxide as the derivatization agent. The butylated dicarboxylic acids were then separated and identified by ion- trap GC-MS with electron impact ionization. Solid-phase extraction method instead of rotary evaporation method was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with RSD less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Comparison with off-line butylated method, compatible results were obtained by using on-line derivatization with shorter derivatization time and a small quantity of solvent consumed.
江政哲:以固相萃取法及氣相層析質譜儀隊水環境中動情激素類有機污染物之分析與研究,碩士論文,國立中央大學化學研究所,民國九十一年。
秦若鈺:大氣常見有機物分析及有機/無機混合氣膠含水特性之研究,碩士論文,國立中央大學環境工程學研究所,民國九十三年。
陳仲村:以離子對直接高溫衍生法快速分析水樣中具極性官能基及離子性化合物的研究,碩士論文,國立中央大學化學研究所,民國八十八年。
郭瀚文:以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發,碩士論文,國立中央大學化學研究所,民國九十三年。
Ding, W. H. and Chen, C. T. (1999) Analysis of linear alkylbenzenesulfonates in water samples by large-volume injection-port derivatization and gas chromatography-mass spectrometry, J. Chromatogr. A, 857, 359-364.
Ding, W. H. and Chiang, C. C. (2003) Derivatization procedures for the detection of estrogenic chemicals by gas chromatography/mass spectrometry, Rapid Commun. Mass Spectrom., 17, 56-63.
Ding, W. H. and Tzing, S. H. (1998) Analysis of nonylphenol polyethoxylates and their degradation products in river water and sewage effluent by gas chromatography-ion trap (tandem) mass spectrometry with electron impact and chemical ionization, J. Chromatogr. A, 824, 79-90.
Fabbri, D., Chiavari, G., Prati, S., Vassura, I., and Vangelista, M. (2002) Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose, Rapid Commun. Mass Spectrom., 16, 2349-2355.
Field, J. A., Field, T. M., Polger, T., and Giger, W. (1994) Determination of secondary alkane sulfonates in sewage wastewaters by solid-phase extraction and injection-port derivatization gas chromatography/mass spectrometry, Environ. Sci. Technol, 28, 497-503.
Field, J. A., Miller, D. J., Field, T. M., Hawthorne, S. B., and Giger, W. (1992) Quantitative determination of sulfonated aliphatic and aromatic surfactants in sewage sludge by ion-pair/supercritical fluid extraction and derivatization gas chromatography/mass spectrometry, Anal. Chem., 64, 3161-3167.
Friel, P. and Troupin, A. S. (1975) Flash-heater ethylation of some antiepileptic drugs, Clin. Chem., 21/6, 751-754.
Grosjean, D., Cauwenberghe, K. V., Schmid, J. P., Kelly, P. E., and Pitts, Jr. J. N. (1978) Identification of C3-C10 aliphatic dicarboxylic acids in airboneparticulate matter, Environ. Sci. Technol., 12, 313-317.
Hatakeyamas, S., Ohno, M., Weng, J., Takagi, H., and Akimoto, H. (1987) Mechanism for the formation of gaseous and particulate products fromozone-cycloalkene reactions in air, Environ. Sci. Technol., 21, 52-57.
Heywood, A., Mathias, A. and Williams, A. E. (1970) Identification of sulfonic acids and sulfonates by mass spectrometry, Anal. Chem., 42, 1272-1273.
Kawamura, K. and Gagosian, R. B. (1987) Implication of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids, Nature, 325, 330-332.
Kawamura, K. and Ikushima, K. (1993) Seasonal changes in the distributionof dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol., 27, 2227-2235.
Kawamura, K. and Kaplan, I. R. (1987) Motor exhaust emission as a primarysource for dicarboxylic acids in Los Angeles Ambient Air, Environ. Sci. Technol., 21, 105-110.
Kawamura, K. and Kasukabe, H. (1996) Source and relation pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations, Atoms. Environ., 30, 1709-1722.
Kawamura, K., Steinberg, S., Kaplan, I. R. (1985) Capillary GC determination of short-chain dicarboxylic acids in rain, fog, and mist, Int. J. Environ. Anal. Chem., 19, 175-188.
Kawamura, K. and Usukura, K. (1993) Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol sample, J. Oceanography, 49, 271-283.
Kerminen, V., Teinilä, K., Hillamo, R., and Mäkelä, T. (1999) Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere, Atoms. Environ., 33, 2089-2100.
Khwaja, H. A. (1994) Atmospheric concentrations of carboxylic acids andrelated compounds at a semiurban site, Atoms. Environ., 29, 127-139.
Kuo, H. W. and Ding, W. H. (2004) Trace determination of bisphenol A and phytoestrogens in infant formula powders by gas chromatography–mass spectrometry, J. Chromatogr. A, 1027, 67-74.
Limbeck, A., Puxbaum, H., Otter, L., and Scholes, M. C. (2001) Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background sute ( Nylsvley, RSA ), Atmos. Environ., 35, 1853-1862.Kleefeld, S., Hoffer, A., Krivácsy, Z., and Jennings, S. G. (2002) Importance of organic and black carbon in atmospheric aerosols at Mace Head, on the West Coast of Ireland (53°19’N, 9°54’W), Atmos. Environ., 36, 4479-4490.
Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1991) Biological input to visibility-reducing aerosol particles in the remote arid Southwestern United States, Environ. Sci. Technol., 25, 684-694.
Mészáros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, Gy., Krivácsy, Z., Molnár, A., and Polyák, K. (1997) Size distributions of inorganic andorganic species in the atmospheric aerosol in Hungary, J. Aerosol Sci., 28, 1163-1175.
Neitzel, P. L., Walther, W., and Nestler, W. (1998) In-situ methylation of strongly polar organic acids in natural waters supported by ion-pairing agents for headspace GC-MSD analysis, Fresenius J. Anal. Chem., 361, 318-323.
Pereira, W. E., Rostad, C. E., Taylor, H. E. and Klein, J. M. (1982) Characterization of organic contaminants in environmental samples associated with Mount St. Helens 1980 volcanic eruption, Environ. Sci. Technol., 16, 387-396.
Persson, B. A. and Schill, G. (1993) Handbook of derivatives for chromatography (Blau, K. and Halket, J. M. eds), John Wiley and son, NY, 253-265.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1991) Sources of fine organic aerosol: 1. Charbroilers and meat cooking operations, Environ. Sci. Technol., 25, 1112-1125.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993) Sources of fine organic aerosol: 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environ. Sci. Technol., 27, 636-651.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993) Sources of fine organic aerosol: 3. Road dust, tire debris, and organometallic brake lining dust - roads as sources and sinks, Environ. Sci. Technol., 27, 1892-1904.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993) Sources of fine organic aerosol: 4. Particulate abrasion products from leaf surfaces of urban plants, Environ. Sci. Technol., 27, 2700-2711.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993) Sources of fine organic aerosol: 5. Natural gas home appliances, Environ. Sci. Technol., 27, 2736-2744.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1994) Sources of fine organic aerosol: 6. Cigarette smoke in the urban atmosphere, Environ. Sci. Technol., 28, 1375-1388.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1997) Sources of fine organic aerosol: 7: Hot asphalt roofing tar pot fumes, Environ. Sci. Technol., 32, 13-22.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1997) Sources of fine organic aerosol: 8. Boilers burning No. 2 distillate fuel oil, Environ. Sci. Technol., 32, 13-22.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., and Cass, G. R., (1993b) Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atoms. Environ., 27, 1309-1330.
Saxena, P., Hildemann, L. M. (1996) Water-soluble organic atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1996) Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ., 30, 3837-3855.
Schkolnik, G., Falkovich, A. H., Rudich, Y., Maenhaut, W., and Artaxo, P. (2005) New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples, Environ. Sci. Technol., 39, 2744-2752.
Seinfeld, J. H., Pandis, S. N. (1998) Atmospheric Chemistry and Physics, John Wiley, New York.
Sempere, R. and Kawamura, K. (1994) Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere, Atmos. Environ., 28, 449-459.
Shu, W. C. and Ding, W. H. (2005) Determination of fluorescent whitening agents in laundry detergents and surface waters by solid-phase extraction and ion-pair high-performance liquid chromatography, J. Chromatogr. A, 1088, 218-223.
Simoneit, B. R. T. (2002) Biomass burning - a review of organic tracers for smoke from incomplete combustion, Geochemistry, 17, 129-162.
Turpin, B. J. and Lim, H. J., (2001) Species contributions to PM2.5 massconcentrations: revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602–610.
Turpin, B. J., Saxena, P., and Andrews, E. (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34, 2983–3013.
Zdráhal, Z., Oliveira, J., Vermeylen, R., Claeys, M., and Maenhaut, W. (2002) Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations, Environ. Sci. Technol., 36, 747-753.