| 研究生: |
陳香妤 Hsiang-Yu Chen |
|---|---|
| 論文名稱: |
應力緩衝層對砷化銦量子點侷限能階之影響 The influence of strain reducing layer on the confined energy level of InAs quantum dots |
| 指導教授: |
徐子民
Tzu-Min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 量子點 、砷化銦 、應力緩衝層 |
| 外文關鍵詞: | InAs, strain reducing layer, quantum dot |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來部分量子點的研究致力於使量子點能發出適合光纖使用的波長(1.3μm或1.55μm),因這兩個波長的光能於光纖中有極高程度的反射而能減少光強度被光纖所吸收,進而使光在光纖中的傳輸距離增加。
有許多研究群發現在量子點樣品中,加蓋一層應力緩衝層可以調整量子點之發光位置使其達到1.3μm或1.55μm,然而對於應力緩衝層對量子點能量之影響,卻仍未有明確之定論。目前認為造成此結果的因素有四項:侷限位能降低、原子相互擴散、應力減小及量子點大小改變等,本論文的主要內容即為探討應力緩衝層對量子點侷限能階之影響,並嘗試透過簡化過之計算來討論這四種因素對量子點能量紅移之影響程度。
The growth of InGaAs on InAs quantum dots as strain reducing layer has been investigated in recent years. However, the main reason that cause the red-shift of quantum dot energy level after capping strain reducing layer is still ambiguous. It''s believed that there are four reasons which may give rise to this result. We try to figure out which reason is dominant by using some simple calculaitons.
參考文獻
1.H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, Appl. Phys. Lett. 71, 193 (1997).
2.S. Kim, H. Mohseni, M. Erdtmann, E Michel, C. Jelen, and M. Razeghi, Appl. Phys. Lett. 73, 963 (1998).
3.A. Lenz, R. Timm, H. Eisele, Ch. Hennig, S. K. Becker, R. L. Sellin, U. W. Pohl, D. Bimberg, and M. Dahne, Appl. Phys. Lett. 81, 5150 (2002).
4.J. P. McCaffrey, M. D. Robertson, S. Fafard, Z. R. Wasilewski, E. M. Griswold, and L. D. Madsen, J. Appl. Phys. 88, 2272 (2000).
5.C. Lobo, R. Leon, S. Fafard, and P. G. Piva, Appl. Phys. Lett. 72, 2850 (1998).
6.M. Arzberger, U. Kasberger, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3968 (1999).
7.Kenichi Nishi, Hideaki Saito, Shigeo Sugou, and Jeong-Sik Lee, Appl. Phys. Lett. 74, 1111 (1999).
8.L. Seravalli, M. Minelli, P. Frigeri, P. Allegri, V. Avanzini, and S. Franchi, Appl. Phys. Lett. 82, 2341 (2003).
9.D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, (Wiley, Chichester, 1999).
10.Fariba Ferdos, Shumin Wang, Yongqiang Wei, and Anders Larsson, Appl. Phys. Lett. 81, 1195 (2002)
11.A. Rosenauer, U. Fischer, D. Gerthsen, and A. Forster, Appl. Phys. Lett. 71, 3868 (1997).
12.P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, Phys. Rev. B 58, R15981 (1998).
13.T. J. C. Hosea, phys. stat. sol. (b) 189, 531 (1995).
14.Chris G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
15.Arkadiusz Wojs, Pawel Hawrylak, Simon Fafard, and Lucjan Jacak, Phys. Rev. B 54, 5604 (1996).
16.Shun Lien Chuang, Physics of Optoelectronic Devices, (Wiley, 1995).
17.J. Shumway, A. J. Williamson, Alex Zunger, A. Passaseo, M. DeGiorgi, R. Cingolani, M. Catalano, and P. Crozier, Phys. Rev. B 64, 125302 (2001).
18.M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996).