| 研究生: |
蔡孟翰 Meng -Han Tsai |
|---|---|
| 論文名稱: |
不同鍍層處理應用於金屬多孔材對於燃料電池性能影響之研究 Study on coating layers of the metal foam in PEM fuel cell |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 石墨烯鍍層 、氮化鋯鍍層 、質子交換膜燃料電池 、銅金屬多孔材 、腐蝕極化測試 |
| 外文關鍵詞: | graphene, ZrN, PEM fuel cell, copper foam, electrochemical test |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究探討鎳金屬多孔材與銅金屬多孔材做為質子交換燃料電池燃料氣體流道之抗腐蝕性質,由於PEMFC內部呈酸性環境,勢必侵蝕金屬多孔材流道,因此透過表面鍍層處理優化其材料性質,並提升燃料電池金屬多孔材之疏水性質、導電性與抗腐蝕性等;利用化學氣相沉積法在鎳金屬與銅金屬表面成長石墨烯並與市面上常見之抗腐蝕鍍層(氮化鈦鍍層與氮化鋯鍍層)進行比較,並透過腐蝕極化測試、接觸角量測、界面接觸阻抗量測與表面微觀結構分析材料性質,進一步組成單電池比較性能表現與發電穩定性。
石墨烯鍍層表面結構緻密,擁有低電阻與高疏水性質的特性,鍍於過鍍金屬銅多孔材上比鎳多孔材更均勻而完整,且相較於氮化物鍍層,石墨烯能夠批覆在任何幾何形狀上,利於成長在結構複雜之金屬多孔材表面;氮化鋯鍍層雖擁有最高之界面接觸阻抗,不利燃料電池質子交換膜發電的傳導,但在延續燃料電池使用壽明與增加發電穩定性相當優秀,即使在嚴苛環境中也能有最佳之抗腐蝕能力;結果顯示石墨烯鍍層既穩定,化學性質與物理性質亦非常優秀,為現今最薄的腐蝕抑制層。
The research is about anti-corrosion property of different thin films coated on nickle foam and copper foam, coatings include graphene, TiN and ZrN. Coatings property are characterized through SEM, Raman spectrometer, contact angle test, interfacial contact resistance and electrochemical test. Furthermore, surface treated metal foam is used as reactant gas distributor in single fuel cell. I-V curves, long-term stability test were measured to investigate the effects of corrosion properties of nickle foam and copper foam on the performance of PEM fuel cell.
Graphene coated foam shows the most dense surface in SEM. With low interfacial contact resistance and good hydrophobic, graphene coating is able to enhance the durability and material property of metal foam. Although ZrN coating has largest interfacial contact resistance which would decrease the conductivity of PEM fuel cell, ZrN coating increases metal foam life time and stability of PEM fuel cell power output effectively. Both graphene coating and ZrN coating have excellent anti-corrosion property, but ZrN coating performs better than graphene coating at high-temperature condition in electrochemical test.
參考文獻
[1] J. Marcinkoski, J.P. Kopasz, T.G. Benjamin, “Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells,” International Journal of Hydrogen Energy, Vol. 33, no. 14, pp. 3894-3902, 2008
[2] Y. Ge, Q. Zhi, “Literature Review: The Green Economy, Clean Energy Policy and Employment,” Energy Procedia, Vol. 88, pp. 257-264, 2016
[3] S. M. Lu, “A review of high-efficiency motors: Specification, policy, and technology,” Renewable and Sustainable Energy Reviews, Vol. 59, pp. 1-12, 2016
[4] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. A. Makky, A.G. Olabi, “Developments in fuel cell technologies in the transport sector,” Hydrogen Energy, Unpoblished
[5] C. Y. Liu, C. C. Sung, “A review of the performance and analysis of proton exchange membrane electrode assembles,” Journal of Power Sources, Vol. 220, pp. 348-353, 2012
[6] A. Kumar, R. G. Reddy, “Polymer Electrolyte Membrane Fuel Cell with Metal Foam in the Gas Flow-Field of Bipolar/End Plates,” Journal of New Materials for Electrochemical Systems, Vol 6, pp. 231-236, 2003
[7] H. Sun, K. Cooke, G. Eitzinger, P. Hamilton, B. Polle, “Development of PVD coatings for PEMFC metallic bipolar plates,” Thin Solids Films, Vol. 528, pp. 199-204, 2013
[8] Fuel Cell Today (2011). The Fuel Cell Today Industry Review 2011. Technical report, Fuel Cell Today. xv, 5, 6, 11
[9] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012
[10] X. Ch eng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z.S. Liu, H. Wang, J. Shen, “A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation,” Journal of Power Sources, Vol. 165, no. 2, pp. 739-756,2007
[11] V. R. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, Vol. 35, pp. 3632-3647, 2010
[12] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, Vol. 35, pp. 3632-3647, 2010
[13] 黃鎮江,燃料電池(第三版),滄海書局,台中市,民國97年
[14] R. Taherian, “A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection,” Journal of Power Sources, Vol. 265, pp. 370-390, 2014
[15] R. Taherian, “A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection,” Journal of Power Sources, Vol. 265, pp. 370-390, 2014
[16] W. Yuan, Y. Tang, X. Yang, Z. Wan, “Porous metal materials for polymer electrolyte membrane fuel cells – A review,” Applied Energy, Vol. 94, pp. 309-329, 2012
[17] R. Brown, M. N. Alias, “Effect of composition and thickness on corrosion behavior of TiN and ZrN thin films,” Surface and Coatings Technology, Vol. 62, pp. 467-473, 1993
[18] W. J. Chou, G. P. Yu, J. H. Huang, “Corrosion resistance of ZrN films on AISI 304 stainless steel substrate,” Surface and Coatings Technology, Vol. 167, pp. 59-67, 2003
[19] M. F. Peker, Ö. N. Cora, M. Koç, “Investigations on the variation of corrosion and contact resistance characteristics of metallic bipolar plates manufactured under long-run conditions,” International Journal of Hydrogen Energy, Vol. 36, pp. 15427-15436, 2011
[20] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, Vol. 46, pp. 1369-1380, 2006
[21] Y. Wang, D. O. Northwood, “An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments,” International Journal of Hydrogen Energy, Vol. 32, pp. 895-902, 2007
[22] D. Zhang, L. Duan, L. Guo, Z. Wnag, J. Zhao, W. H. Tuan, K. Niihara, “TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating,” International Journal of Hydrogen Energy, Vol. 36, pp. 9155-9161, 2011
[23] S. Pugal Mani, A. Srinivasan, N. Rajendran, “Effect of nitrides on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC),” International Journal of Hydrogen Energy, Vol. 40, no. 8, pp. 3359-3369, 2015
[24] Y. Dong, Q. Liu, Q. Zhou, “Corrosion behavior of Cu during graphene growth by CVD,” Corrosion Science, Vol. 89, pp. 214-219, 2014
[25] F.T. Si, X.W. Zhang, X. Liu, Z.G. Yin, S.G. Zhang, H.L. Gao, J.J. Dong, “Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition,” Vacuum, Vol. 86, pp. 1867-1870, 2012
[26] L. F. Dume´e, L. He, Z.Wang, P. Sheath, J. Xiong, C. Feng, M. Y. Tan, F. She, M. Dukr, S. Gray, A. Pacheco, P. Hodgson, M. Majumder, L. Kong, “Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings,” Carbon, Vol. 87, pp. 395-408, 2015
[27] D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, “Graphene: Corrosion-inhibiting coating,” ACS Nano, Vol. 6, no. 2, pp. 1102-1108, 2012
[28] U. Mogera, N. Kurra, D. Radhakrishnan, C. Narayana, G.U. Kulkarni, “Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation,” Carbon, Vol. 78, pp. 384-391, 2014
[29] N.W. Pu, G.N. Shi, Y.M. Liu, X. Sun, J.K. Chang, C.L. Sun, M.D. Ger, C.Y. Chen, P.C. Wang, Y.Y. Peng, C.H. Wu, S. Lawes, “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” Journal of Power Sources, Vol. 282, pp. 248-256, 2015
[30] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wanga, C.I. Lee, C.C. Yang, S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012
[31] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang, S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Conversion and Management, Vol. 62, pp. 14-21, 2012
[32] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[33] K. Feng, G. Wu, Z. Li, X. Cai, P. K. Chu, “Corrosion behavior of SS316L in simulated and accelerated PEMFC environments,” International Journal of Hydrogen Energy, Vol. 36, pp. 13032-13042, 2011
[34] Y. Zhao, L. Wei, P. Yi, L. Peng, “Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs,” International Journal of Hydrogen Energy, Vol. 41, pp. 1142-1150, 2016
[35] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angewandte Chemie-International Edition, Vol. 48, no. 42, pp. 7752-7777, 2009
[36] D. Zhang, L. Duan, L. Guo, W.H. Tuan, “Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell, ” International Journal of Hydrogen Energy, Vol. 35, pp. 3721-3726, 2010