跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張佑璿
YU-HSUAN CHANG
論文名稱: 隨機旅行時間下保全公司運鈔車護運作業排程規劃之研究
The Cash Pick-up and Delivery Vehicle Routing/Scheduling under Stochastic Travel Times
指導教授: 顏上堯
shang-yao yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 時空相似度隨機性旅行時間啟發解法時空網路運鈔車護運作業排程
外文關鍵詞: heuristic, stochastic traveling time, time-space network, similarity of time and space, cash pick-up and delivery vehicle routing/schedu
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的保全公司負責銀行各分行現金護運至總行、各提款機現金之護運、有簽訂契約之公司行號現金護運至銀行時,經常面臨被搶劫的風險,每當被歹徒搶劫往往會對保全公司之客戶端造成龐大的財物損失。台灣過去十年間,運鈔車被歹徒搶劫之事件就高達 35 件之多,平均每年會有 3.5 輛運鈔車被歹徒搶劫,頻率非常高。從許多運鈔車被搶劫的案例中可以發現,運鈔車護運作業行駛的路線與抵達時間欠缺變化性,容易被歹徒輕易的跟蹤、觀察,進而掌握運鈔車行駛的動向為主要因素。實務上,運鈔車的排程方式主要是透過人工經驗判斷,規劃出幾條可選方案進行指派,此作法缺乏系統最佳化觀點,因此規劃結果經常造成資源浪費。過去運鈔車排程的研究多以平均旅行時間為依據,進行運鈔車輛的排程,此作法未考量實際旅行時間的隨機性。在實際營運時若隨機旅行時間造成擾動過大,將使原規劃的排程結果失去最佳性。因此,本研究針對隨機性旅行時間之影響,並考量運鈔車每日護運路線所需的變化性,構建一時空相似度幫助決策單位解決護運路線過於單調且缺乏變化之情形,增加運鈔車護運路線與抵達時間的變化性與安全性。
    本研究利用時空網路流動技巧建立一此隨機模式,以定式車輛在時空中的流動情況。本研究進一步修改隨機模式之旅行時間為平均旅行時間,建立一確定性模式,此兩模式屬NP-hard 問題。在求解方法上,利用 C++ 程式語言配合數學規劃軟體 CPLEX 進行模式求解,但當面臨實務的大型問題時,勢將難以在有限時間內利用數學規劃軟體求得最佳解。緣此,本研究發展一啟發式演算法以有效地求解問題。此外,本研究亦發展一模擬評估方法,以評估兩模式的實際營運績效。最後為評估模式與演算法之實用績效,本研究以國內一保全公司的營運資料以及合理假設產生測試範例,進行範例測試並針對不同參數進行敏感度分析,結果顯示本模式與演算法在實務上可有效的運用,並提供保全公司作為參考。


    The security carriers in Taiwan mainly deal with cash pick-up and delivery from chest to bank and ATM (Automatic Teller Machine). The cash conveyance often faces the risk of the robbery, which always causes great property of damage to the clients. In the past 10 years, the robbery occurrence in Taiwan has reached up to 35 cases, with an average of 3.5 cases per year. From these cases, we could find that the main reason of the robbery is due to the invariant conveyance routes and the arriving time at demand points. In practice, the personal experience of the decision maker is used to construct the cash pick-up and delivery vehicle routing/ scheduling, which lacks the perspective of system optimization. Therefore, the scheduling resources are always wasted. The past researches on the cash pick-up and delivery vehicle routing/ scheduling is mainly based on the average traveling time, which do not consider the stochastic traveling time. Therefore, when actual cash conveyance routing/ scheduling is affected by stochastic traveling time, the already planned vehicle routing/ scheduling will be disturbed and lose its system optimization. This research thus considers the stochastic traveling time and the similarity of time and space of the cash conveyance route to construct the cash pick-up and delivery vehicle routing/ scheduling model. This stochastic traveling time model is also expected to help the decision maker formulate the variant conveyance routes and the arriving time at demand points and reduce the risk of the robbery.
    In this research, the time-space network flow technique is used to show the potential movement of the cash pick-up and delivery vehicle under stochastic traveling time and to construct the stochastic traveling time model. We also consider the average traveling time to construct the deterministic traveling time model. Mathematically, these two models are formulated as an integer multiple-commodity network flow problem, which is characterized as NP-hard. We employ the C computer language, coupled with the CPLEX mathematics programming solver, to solve the problem. Because the problem size is expected to be huge, a solution algorithm based on a problem decomposition/collapsing technique is thus developed to efficiently solve the problem. Note that we also develop a method to evaluate the performance of these two models and practical arrangements in simulated real operations. The numerical tests are performed using data from the security carrier in Taiwan. The results show that the model and the solution algorithm would be useful for formulating the variant conveyance routes.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與範圍 3 1.3 研究方法與流程 3 第二章 現況概述與文獻回顧 5 2.1 國內保全業現況概述 5 2.2 運鈔車護運作業排程與相似度相關文獻 7 2.3 時窗限制之車輛派遣問題之相關文獻 7 2.4 時空網路之相關文獻 9 2.5 隨機擾動之相關理論與文獻 12 2.5.1 隨機性問題相關理論 12 2.5.2 隨機擾動相關文獻 15 2.6 大型含額外限制之整數網路流動問題啟發式演算法之相關文獻 18 2.7 文獻評析 20 第三章 模式構建 22 3.1 隨機性運鈔車護運作業排程模式架構 22 3.1.1 運鈔車護運作業排程模式之基本假設 22 3.1.2 隨機性模式之車流時空網路 24 3.1.3 非預期懲罰成本說明 29 3.1.4 運鈔車護運作業排程模式之路線比對 32 3.1.5 運鈔車護運作業排程模式之符號說明 36 3.1.6 運鈔車護運作業排程模式之數學定式 37 3.2 確定性運鈔車護運作業排程模式 38 3.2.1 確定性模式之時空網路 38 3.2.2 確定性模式之數學定式 39 3.3 模擬評估方法 40 3.4 模式測試 40 3.5 模式應用 42 3.6 小結 43 第四章 求解演算法設計 44 4.1 啟發解演算法 44 4.2 目標值下限解 50 4.3 小結 51 第五章 範例測試 52 5.1 資料分析 52 5.1.1 運鈔車護運作業排程規劃所需之相關參數資料 52 5.1.2 服務需求點資料 53 5.1.3 運鈔車護運作業之成本資料 54 5.2 模式發展 55 5.2.1 問題規模 55 5.2.2 模式輸入資料 56 5.3 電腦演算環境及設定 57 5.3.1 電腦演算環境 57 5.3.2 相關參數設定 58 5.3.3 模式輸出資料 59 5.4 測試結果與分析 59 5.4.1 模擬評估隨機狀況數目 59 5.4.2 隨機性運鈔車護運作業排程測試結果 60 5.4.3 不同模式間之分析比較 62 5.5 敏感度分析 64 5.5.1 超出時窗懲罰成本之敏感度分析 64 5.5.2 固定成本之敏感度分析 65 5.5.3 運鈔車護運作業路線比對之敏感度分析 67 5.6 方案分析 72 5.6.1 非預期懲罰成本之折減率方案分析 72 5.6.2 每日規劃的護運作業路線比對先前不同天數所規劃的護運作業路線之方案分析 73 5.6.3 隨機旅行時間標準差之方案分析 75 5.7 小結 77 第六章 結論與建議 78 6.1 結論 78 6.2 建議 79 6.3 貢獻 79 參考文獻 81 附錄. 89 附錄一 CPLEX Callable Library Code 89 附錄二 超出時窗懲罰成本敏感度分析 90 附錄三 時空相似度敏感度分析 91

    參考文獻
    1. 乃啟育,「策略聯盟環境下城際客運排程規劃模式之研究」,碩士論文,國立中央大學土木工程系 (2006)。
    2. 王至誠,「台灣地區保全業經營管理的特性與問題之研究」,碩士論文,國立中山大學高階經營碩士班 (2000)。
    3. 申生元,「時窗限制車輛途程問題」,博士論文,國立交通大學工業工程與管理學系 (1998)。
    4. 江文毅,「運鈔車護運路線決策支援系統建立之研究」,碩士論文,華梵大學工業管理學系 (2001)。
    5. 余秀梅,「多元商品模式應用在動態貨櫃調度問題之研究」,碩士論文,國立成功大學交通管理科學研究所 (1994)。
    6. 呂英志,「即時資訊下車輛路線問題之研究」,碩士論文,逢甲大學交通工程與管理研究所 (2002)。
    7. 吳富榮,「保全業標準作業流程與風險管理研究」,碩士論文,國立台北大學犯罪研究所 (2008)。
    8. 吳逸祥,「隨機旅行時間下計程車共乘及乘客配對整合模式與求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2009)。
    9. 吳銘偉,「保全公司運鈔車護運作業排程規劃之研究」,碩士論文,國立中央大學土木工程系 (2010)。
    10. 吳權哲,「都會區計程車共乘配對模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2007)。
    11. 辛孟鑫,「撥召運輸系統路線規劃問題之研究-以台北市復康巴士為例」,碩士論文,國立成功大學交通管理科學研究所 (2005)。
    12. 林士鈞,「定期貨櫃運輸船舶排程暨船期表建立之研究」,碩士論文,國立中央大學土木工程系 (2006)。
    13. 林益生,「隨機環境下多商品、多車種派車問題之研究」,碩士論文,中原大學工業工程研究所 (1998)。
    14. 邱明琦、陳春益、林佐鼎,「海運貨櫃排程模式之研究」,運輸計劃季刊,第三十一卷,第三期,第495-522頁 (2002)。
    15. 侯育周,「隨機性班機到離延誤下動態機門指派之研究」,碩士論文,國立中央大學土木工程學系 (2007)。
    16. 苑鳳萍,「客運車輛擾動下調度系統之研究」,碩士論文,國立交通大學運輸工程與管理研究所 (2001)。
    17. 唐存寬,「在顧客需求為隨機之假設下多種貨品儲運分配系統設計」,碩士論文,國防管理學院資源管理研究所 (1999)。
    18. 曹智翔,「短期需求擾動下動態醫療物資輸配送之研究」,碩士論文,國立中央大學土木工程學系 (2007)。
    19. 許志成,「定期貨櫃船舶排程計畫研究」,碩士論文,國立中央大學土木工程系 (1998)。
    20. 陳靜惠,「保全業維護治安之功能與角色研究-以高雄市為例」,碩士論文,國立中正大學犯罪防治所 (2006)。
    21. 陳妙珍、顏上堯、張珮璇,「航空公司資產與負債管理模式之建立」,第四屆海峽兩岸會計與管理學術研討會論文集,武漢 (2000)。
    22. 陳俊豪,「因應臨時事件變動租用數機場共用櫃檯即時指派之研究」,碩士論文,中央大學土木工程學系 (2005)。
    23. 陳聖鈺,「隨機旅行時間下災後工程搶修物料補給排程之研究」,碩士論文,國立中央大學土木工程系 (2009)。
    24. 張聲傑,「隨機旅行時間下小客車共乘配對模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2010)。
    25. 游俊雄、丁國樑,「需求反應旅次運載模擬模式應用於捷運營運班表之評估」,運輸計劃季刊,第二十七卷,第三期,第489-508頁 (1998)。
    26. 楊大輝、李綺容,「需求變動下之航空貨運網路規劃」,運輸學刊,第十九卷,第二期,第169-189頁 (2007)。
    27. 董又榮,「市場競爭下城際客運排程規劃模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2005)。
    28. 廖建韋,「醫療物資訂購及配送排程規劃之研究」,碩士論文,中央大學土木工程學系 (2007)。
    29. 賴峻偉,「隨機旅行時間下快遞運務員作業排程規劃及即時調整之研究」,碩士論文,國立中央大學土木工程系 (2009)。
    30. 盧華安,「因應班機延遲之最佳化即時機門指派」,運輸計劃季刊,第三十卷,第四期,第849-869頁 (2001)。
    31. 顏上堯、杜宇平、陳怡妃,「因應臨時事件機場共用櫃檯即時指派之研究」,運輸計劃季刊,第三十三卷,第一期,第59- 81頁 (2004)。
    32. 顏上堯、齊志仁、湯慶輝,「隨機需求下多目標長途客運排程模式之研究」,運輸計劃季刊,第三十四卷,第一期,第 93-117 頁 (2005)。
    33. 顏上堯、翁綵穗,「季節轉換間緩衝期飛航排程之研究」,運輸計劃季刊,第三十卷,第四期,第 891-921 頁 (2001)。
    34. 顏上堯、曾志煌,「單機種機隊排程與班次整合之研究」,運輸計劃季刊,第二十八卷,第四期,第 635-658 頁 (1999)。
    35. 顏上堯、羅智騰,「因應預期性航具維修之系統性飛航排程」,中國土木水利工程學刊,第八卷,第三期, 第447-456頁 (1996)。
    36. 羅敏綺,「隨機需求下捷運系統營運模擬模式之構建-以台北市木柵線為例」,碩士論文,國立成功大學交通管理科學研究所 (1998)。
    37. 蘇冠宇,「保全人員與職業有關的被害風險之探索性研究-以現金運送保全為例」,碩士論文,國立台北大學犯罪研究所 (2004)。
    38. 蘇意婷,「國籍航空公司貨機飛航排程暨班表建立之研究」,碩士論文,長榮大學航運管理研究所 (2006)。
    39. Agin, N. and Cullen, D., An Algorithm for Transportation Routing and Vehicle Loading, in Geisler, M. (Ed.), Logistics, pp.1-20, North Holland, Amsterdam (1975).
    40. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H., “Branch-and-price: column generation for solving huge integer programs,” Operations Research, Vol 46, pp. 316-329 (1998).
    41. Benders, J. F., “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, Vol. 4, pp. 238-252 (1962).
    42. Bent, R. W. and Hentenryck P. V., “Scenario-based planning for partially dynamic vehicle routing with stochastic customers,” Operations Research, Vol.52, pp.977-987 (2003).
    43. Chih, K. C. K., “A real time dynamic optimal freight car management simulation model of multiple railroad, mulitcommodity temporal spatial flow problem,” Ph.D. Dissertation, Princeton University, Princeton, NJ (1986).
    44. Chen, C. Y. and Kornhauser, A. L., “Decomposition of convex mulitcommodity network flow problem,” Report SOR-90-19, Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ (1990).
    45. Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F., “Daily aircraft routing and scheduling,” Management Science, Vol. 43, pp. 841-855 (1997).
    46. Diana, M. and Dessouky, M. M., “A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows,” Transportation Research Part B, Vol.38, pp.539–557 (2004).
    47. Diana, M., Dessouky, M. M., and Xia, N., “A model for the fleet sizing of demand responsive transportation services with time windows,” Transportation Research Part B, Vol. 40, Issue 8, pp.651-666 (2006).
    48. Fisher, M. L., “The Lagrangian relaxation method for solving integer programming problem,” Management Science, Vol. 27, pp. 1-18 (1981).
    49. Garey, M. R. and Johnson, D.S. (1979). “Computers and intractability: a guide to the theory of NP-completeness,” San Francisco, CA: Freeman.
    50. Horn, M.E.T., “Fleet scheduling and dispatching for demand-responsive passenger services,” Transportation Research Part C, Vol. 10, pp. 35-63(2002).
    51. Ibaraki, T., Kubo, M., Masuda, T., Uno, T. and Yagiura, M., “Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Windows,” working paper, Department of Applied Mathematics and Physics, Kyoto University, Japan (2001).
    52. Kennington, J. L. and Shalby, M., “An effective subgradient procedure for minimum cost multicommodity flow problem,” Management Science, Vol. 23, pp.994-1004 (1977).
    53. Kenyon, A. S. and Morton, D. P., “Stochastic vehicle routing with random travel times,” Transportation Science, Vol. 37, pp. 69-82 (2003).
    54. Levin, A., “Scheduling and fleet routing models for transportation systems,” Transportation Science, Vol. 5, pp. 232-255 (1971).
    55. Levin, A., “Some fleet routing and scheduling problems for air transportation systems,” Flight Transportation Laboratory Report R68-5, Massachusetts Institute of Technology, MA (1969).
    56. Lee, B. C., “Routing problem with service choices, flight transportation laboratory,” Report R86-4, Massachusetts Institute of Technology, MA (1986).
    57. Lamatsch, A., “An approach to vehicle scheduling with depot capacity constraints,” in Desrochers, M. and Rousseau, J. M.(eds.), Computer Aided Transit Scheduling, Lecture Notes in Economics and Mathematical System 386, Springer Verlag, Berlin, Heidelberg, pp. 181-195 (1992).
    58. List, G. F., Wood, B., Nozick, L. K., Turnquist, M. A., Jones, D. A., Kjeldgaard, E. A., and Lawton, C. R., “Robust optimization for fleet planning under uncertainty,” Transportation Research Part E, Vol. 39, pp. 209-227 (2003).
    59. Mesquita, M. and Paixao, J., “Multiple depot vehicle scheduling problem: a new heuristic based on quasi-assignment algorithm,” in Desrochers, M. and Rousseau, J. M.(eds.), Computer Aided Transit Scheduling, Lecture Notes in Economics and Mathematical System 386, Springer Verlag, Berlin, Heidelberg, pp. 181-195 (1992).
    60. Mulvery, J. M. and Ruszczynski, A., “A new scenario decomposition method for large-scale stochastic optimization,” Operations Research, Vol. 43, pp. 477-490 (1995).
    61. Mulvery, J. M., Vanderbei, R. J., Zenios, S. A., “Robust optimization of large-scale systems,” Operations Research, Vol. 43, pp. 254-281 (1995).
    62. Powell, W. B. and Ioannis, A. K., “Shipment routing algorithms with tree constraints,” Transportation Science, Vol. 26, pp. 230-245 (1992).
    63. Simpson, R.W., “A Review of Scheduling and Routing Model for Airline Scheduling,” IX AGIFORS Symposium, Broadway, England (1969).
    64. Shan, Y.S., “A dynamic mulitcommodity network flow model for real time optimal real freight car management,” Ph.D. Dissertation, Princeton University, Princeton, NJ (1985).
    65. Teodorovic, D. and Guberinic, S., “Optimal dispatching strategy on an airline network after a schedule perturbation,” European Journal of Operational Research, Vol. 15, pp. 178-182 (1984).
    66. Teodorovic, D., Airline Operations Research, Gordon and Breach Science Publishers, New York (1988).
    67. Thengvall, B. G., Yu, G., and Bard, J. F., “Multiple fleet aircraft schedule recovery following hub closure,” Transportation Research Part A, Vol. 35, pp. 289-308 (2001).
    68. Yan, S. and Chen, C. H., “Coordinated flight scheduling models for allied airlines,” Transportation Research Part C, Vol. 15, pp. 246-264 (2007).
    69. Yan, S. and Lai, W. S., “An optimal scheduling model for ready mixed concrete supply with overtime considerations,” Automation in Construction, Vol. 16, pp. 734-744 (2007).
    70. Yan, S. and Lin, C., “Airline scheduling for the temporary closure of airports,” Transportation Science, Vol.31, pp. 72-82 (1997).
    71. Yan, S. and Tu, Y., “Multi-fleet routing and multi-stop flight scheduling for schedule perturbation,” European Journal of Operational Research, Vol. 103, pp. 155-169 (1997).
    72. Yan, S. and Yang, D. H., “A decision support framework for handling schedule perturbation”, Transportation Research Part B, Vol. 30, pp. 405-419 (1996).
    73. Yan, S. and Young, H. F., “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight Scheduling,” Transportation Research, Vol. 30A, pp. 379-398 (1996).
    74. Yan, S. and Chen, H. L., “A Scheduling Model and a Solution Algorithm for Inter-city Bus Carriers,” Transportation Research, Vol. 36A, pp. 805-825 (2002).
    75. Yan, S., Chen, C. H., and Chen, C. K., “Long-term manpower supply planning for air cargo terminals,” Journal of Transport Management, Vol. 12, Issue 4, pp. 175-181 (2006).
    76. Yan, S. and Tseng, C.H., “A passenger demand based model for airline flight scheduling and fleet routing,” Computers and Operations Research, Vol. 29, pp. 1559-1581 (2002).
    77. Yan, S., Chi, C. J., and Tang, C. H., “Inter-city bus routing and timetable setting under stochastic demands,” Transportation Research Part A, Vol. 40, pp. 572-586 (2006).
    78. Yan, S. and Shih, Y. L., “A time-space network model for work team scheduling after a major disaster”, Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 63-75 (2007).
    79. Yan, S. and Tang, C. H., “A heuristic approach for Airport Gate Assignments for Stochastic Flight Delays,” European Journal of Operational Research, Vol. 180, Iss. 2, pp. 547-567 (2007).
    80. Yan, S., Shieh, C. W., and Chen, M., “A simulation framework for evaluating airport gate assignments., ”Transportation Research Part A, Vol. 36, pp. 885-898(2002).
    81. Yan, S., Tang, C. H., and Shieh, C.N., “A simulation framework for evaluating airline temporary schedule adjustments following incidents,” Transportation Planning and Technology, Vol. 28, pp. 189-211(2005).
    82. Yan, S., Tang, C.H., and Fu, T.C., “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, Vol. 190, pp. 22-39 (2008a).
    83. Yan, S., Lai, W., and Chen, M., “Production scheduling and truck dispatching of ready mixed concrete,” Transportation Research, Part E, Vol. 44, Issue 1, pp. 164-179 (2008b).

    QR CODE
    :::