跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宇翔
Yu-Xiang Chen
論文名稱: 低電壓驅動垂直有機電晶體之研究
Low Voltage driving Vertical Organic Transistors
指導教授: 張瑞芬
Jui-Fen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 垂直有機電晶體開孔電極結構高介電係數材料
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用膠體微影技術製作低驅動電壓的有機垂直電晶體,於研究中使用N型小分子有機半導體材料碳六十(C60),製作出高電流開/關比與足夠驅動有機發光二極體的有機垂直電晶體,且示範於垂直電晶體上堆疊有機發光二極體製作出有機發光電晶體元件的可行性。首先於二氧化矽/矽基板製作上出光的垂直有機發光電晶體;接下來將閘極改為透明導電膜(ITO),使用高介電係數的三氧化二鋁(Al2O3)作為介電層和高功函數的金源極製作垂直電晶體元件;膠體微影技術能夠於開孔金源極上方直接堆疊絕緣的氧化鋁(AlOx),在不影響開電流密度下,進一步為壓抑關電流密度與提高電流開/關比至一個數量級。整體製作出能以閘極電壓5 V驅動,開電流密度接近102 mA/cm2及開孔電流開/關比104的垂直有機電晶體,並以此架構製作下出光式發光電晶體,此研究未來可應用於穿透式雙向出光的有機發光電晶體。


    This thesis applies colloidal lithography to fabricate vertical organic transistors with low driving voltage. In the study, N-type small-molecule organic semiconductor material carbon sixty (C60) is used to produce high on/off ratio vertical organic transistors which is sufficient to drive the organic light-emitting diode. And demonstrate a vertical organic light emitting transistor achieved by stacking an organic light emitting diode on top of a vertical organic transistor. First, fabricate a top emitting vertical organic light-emitting transistor formed on the SiO2 / Si substrate. Then change the gate to transparent conductive film, ITO, and deposit a high dielectric constant aluminum oxide (Al2O3) as dielectric layer. The device using patterned gold electrode as the source. The colloidal lithography technology can directly stack insulating aluminum oxide (AlOx) above the patterned gold source, further decreasing the off current density and increasing the on/off ratio to an order of magnitude without affecting the open current density. Overall, fabricated a vertical organic transistor capable of driving at a gate voltage of 5 V, while the on-current density close to 102 mA/cm2 and on/off ratio reaches 104. And using this structure to fabricate a substrate side emitting light-emitting transistor. Promising for a transmissivity bidirectional emitting light-emitting transistor in the future.

    摘要 V ABSTRACT VI 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1-1前言 1 1-2 傳統有機薄膜電晶體 3 1-3 蕭特基基底垂直式電晶體 5 1-4 有機發光二極體 10 1-5 研究目的與動機 11 第二章 基本理論 13 2-1 垂直式電晶體之工作原理 13 2-1-1 垂直式電晶體-關狀態操作機制 15 2-1-2 垂直電晶體-開狀態操作機制 18 2-1-3垂直電晶體-轉換特性曲線與開/關電流比 22 2-2 有機發光二極體之工作原理 23 第三章 實驗方法與架構 28 3-1元件材料及結構介紹 28 3-1-1介電層材料介紹 28 3-1-2主動層材料介紹 29 3-1-3源極金屬材料選擇介紹 30 3-2實驗儀器 31 3-2-1手套箱 (Glove Box) 31 3-2-2原子層沉積 (Atomic Layer Deposition) 32 3-2-3熱蒸鍍機 (Thermal Evaporation Coater) 33 3-2-4半導體參數分析儀(Semiconductor Parameter Analyzer) 34 3-2-5場發式掃描式電子顯微鏡(Field Emission Scanning Electron Microscoy,FE-SEM) 35 3-2-6阻抗分析儀 (LF Impedance Analyzer) 36 3-2-7紫外光/可見光光譜儀(Ultraviolet-Visible Spectroscopy) 37 3-2-8傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR) 38 3-3垂直有機電晶體實驗方法及製備 39 3-3-1垂直有機電晶體之元件設計 39 3-3-2垂直有機電晶體之製程步驟 40 第四章 結果與討論 45 4-1矽基板垂直有機發光電晶體 45 4-2低電壓驅動垂直有機電晶體 52 4-2-1 高電容密度介電層 52 4-2-2 膠體微影技術製作開孔源極電極 55 4-2-3 不同C60厚度開孔銀源極電晶體 62 4-2-4 不同C60厚度開孔金源極 64 4-3低電壓驅動垂直有機發光電晶體 72 第五章 結論與未來展望 75 參考文獻 77

    [1] C. L. Lin, T. T. Tsai, IEEE Electron Device Lett, 28 (2007) 489.
    [2] K. Y. Wu, Y. T. Tao, C. C. Ho, W. L. Lee, T. P. Perng, Applied Physics Letters, 99 (2011) 093306 .
    [3] Y. C. Chao, C. H. Chung, H. W. Zan, H. F. Meng, M. C. Ku, Applied Physics Letters, 99 (2011) 233308.
    [4] Y. C. Chao, M. C. Ku, W. W. Tsai, H. W. Zan, H. F. Meng, H. K. Tsai, Sh. F. Horng, Applied Physics Letters, 97 (2010) 223307.
    [5] H. C. Lin, H. W. Zan , Y. C. Chao, M. Y. Chang, H. F. Meng, Science , 30 (2015) 054003.
    [6] T. Hiroi, M. Nakamura, e-Journal of Surface Science and Nanotechnology, 3 (2005) 327-331.
    [7] K. Fujimoto, T. Hiroi, K. Kudo, and M. Nakamura, Advanced Materials, 19 (2007) 525.
    [8] L. Ma, Y. Yang, Applied Physics Letters, 85 (2004) 5084.
    [9] C. Y. Chen, Y. C. Chao, H. F. Meng, S. F. Horng, Applied Physics Letters, 93 (2008) 223301.
    [10] K. Nakamura, T. Hate, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Japanese Journal of Applied Physics, 47 (2008) 1889-1893.
    [11] K. Nakamura, T. Hate, A. Yoshizawa, Applied Physics Letters, 89 (2006) 103525.
    [12] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
    [13] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science, 322 (2011) 570-573.
    [14] W.D. Gill, Journal of Applied Physics, 43 (1972) 5033.
    [15] K. Horiuchia, S. Uchinoa, K. Nakadaa, N. Aokia, M. Shimizub, Y. Ochiai, Physical B, 329–333 (2003) 1538–1539.
    [16] Y. Kuzumoto, M. Kamura, S. Aomori, Applied Physics Letters, 91 (2007) 183514.
    [17] A. Facchetti, M. Mushrush, H. E. Katz, T. J. Mark, Advanced Materials, 15 (2003) 33-38.
    [18] B. Stadlober, M. Zirkl, M. Beutl, G. Leising, Applied Physics Letters, 86 (2005) 242902.
    [19] P Saikia, P. K. Saikia, B. Baishya, Brazilian Journal of Physics, 40 (2010) 357-360.

    [20] M. Kitamura1, Y. Arakawa, Journal of physics, 20 (2008) 184011.
    [21] R. Hofmockel , U. Zschieschang , U. Kraft, R. Rödel , N. H. Hansen ,M. Stolte , F. Würthner, K.Takimiya ,K. Kern, J. Pflaum, H. Klauk, Science Direct, 14 (2013) 3213–3221.
    [22] D. M. Taylor , E. R. Patchett , A. Williams , Z. Ding , H. E. Assender ,J. J. Morrison, S. G. Yeates, Science Direct, 456 (2015) 85–92.
    [23] A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 100 (2012) 263306.
    [24] O. Acton , M. Dubey , T. Weidner , K. M. O’Malley , T. W. Kim ,G. G. Ting , D. Hutchins , J. E. Baio , T. C. Lovejoy ,A. H. Gage ,D. G. Castner , H. Ma , A. K. Y. Jen, Advanced Functional Materials, 21 (2011) 1476-1488.
    [25] S. Y. Yang, K. Shin, C. E. Park, Advanced Functional Materials, 15 (2005) 1860-1814.
    [26] L. L. Chua, J. Zaumseil, J. F. Chang, E. C.W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature, 434 (2005) 192-199.
    [27] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
    [28] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
    [29] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
    [30] M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, A. G. Rinzler, ACS Nano,6 (2012) 9095-9102.
    [31] W. Chen, A. Rinzler, J. Guo, Journal of Applied Physics, 113 (2013) 094507.
    [32] W. Chen, A. G. Rinzler, Jing Guo, Journal of Applied Physics, 113 (2013) 234501.
    [33] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
    [34] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A G. Rinzler, Science ,2305 (2004) 1273-1276.
    [35] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science , 332 (2011) 570-573.
    [36] H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Applied Mater, 8 (2016) 10430-10435.
    [37]Lee, Gyujeong, et al., Journal of Applied Physics 121.2 (2017): 024502.
    [38] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963)
    [39] C. W. Tang, and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) 913.
    [40] M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 103 (2013) 073502.
    [41] A. J. Ben-Sasson , N, Tessler, Nano Letter, 12 (2012) 4729-4733.
    [42] A. J. Ben-Sasson , N. Tessler, Journal of Applied Physics, 110 (2011) 044501.
    [43] Y. Preezant, N. Tesslera, Journal of Applied Physics, 93 (2003) 2059.
    [44] A. J. Ben-Sasson , N. Tessler, Journal of Applied Physics, 110 (2011) 044501.
    [45] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Applied Physics Letters, 67 (1995) 121.
    [46] O. Acton, G. Ting, H. Ma, A. K. Y. Jen, Applied Physics Letters, 93 (2008) 083302.
    [47] E. Itoh, Y. Higashimoto, K. Miyairi, Japanese Journal of Applied Physics, 47 (2008) 480-483.
    [48] Th. B. Singha, N. S. Sariciftci, Applied Physics Letters, 90 (2007) 213512.
    [49] Johnson, Richard W., Adam Hultqvist, and Stacey F. Bent, Materials today 17.5 (2014): 236-246.
    [50] Ron, Hannoch, Sophie Matlis, and Israel Rubinstein. Langmuir 14.5 (1998): 1116-1121.

    QR CODE
    :::