跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊曜銘
YANG,YAO-MING
論文名稱: 以路基土壤強度建立滾壓驗證較適配置之探討-桃園地區為例
Establishing the appropriate configuration for proof rolling test based on subgrade soil strength - Taking Taoyuan soil as an example
指導教授: 陳世晃
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: Abaqus路基滾壓驗證
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今各國機場之跑道施工係參考美國航空聯邦總署 (Federal Aviation Administration, FAA)於 2018年公布之 AC150/5370-10H標準施工規範而訂定 ,於該規範亦有規定路基滾壓驗證項目,對該驗證有明確規定滾壓驗證載具之規格,但無規定載具之載重以及各胎壓(100/125/150 psi)使用時機 ,本研究即 探討桃園地區土壤並 利用程式模擬來找出滾壓驗證載具之載種與胎壓最適使用配置。於實驗室進行土壤含水量、 無圍壓縮試驗、直剪試驗等 土壤性質試驗取得土壤參數並於實驗 室利用漢堡輪跡試驗儀 模擬現地滾壓驗證,最後使用ABAQUS有限元素程式進行模型建設 ,並將實驗得參數帶入模型以模擬現地滾壓驗證。研究結果顯示使用土壤楊氏係數、凝聚力 、摩擦角、膨脹角 這四種參數可有效建立土壤模型;經 ABAQUS模擬滾壓驗證發現載重相較於楊氏係數、胎壓等參數,對 土壤沉 陷量影響較大;本研究模擬不同強度土壤於各胎壓與載重時進行滾壓驗證 發現 FAA 150/5320-6F規定之最低楊氏係數 1,000 psi,該強度之土壤使用加載32 ton載重且胎壓為 125 psi之載具可有效進行滾壓驗證 。建議未來道路路基土壤進行滾壓驗證前可先利用程式模擬找出最適載具規格,
    再依照選定規格進行滾壓驗證,以有效驗證土壤當下之承載力是否足夠使道路更加安全。
    關鍵詞:滾壓驗證 、 ABAQUS、 路基


    The current runway construction of airports in various countries are following the AC150/5370-10H standard construction specification published by the Federal Aviation Administration (FAA) in 2018. Expect of loading and tire pressure, the proof loading verification vehicle is very clear described in this specification. The objective of this study is to find the best configuration tire pressure and loading of the proof loading verification vehicle for the soil in Taoyuan area using computer program simulation. The soil property of Taoyuan included soil moisture content, unconfined compression test, and direct shear test were conducted and those results would be adopted to computer program simulation. The Hamburg wheel track tester was used in the laboratory to simulate the field rolling verification. At last, the ABAQUS, finite element program, was used to build up the situ rolling verification model, and the input parameters were using the lab. test results. The situ rolling verification model was established by soil Young’s modulus, cohesion, friction angle, and expansion angle . According to ABAQUS simulation rolling verification, it is easy to find that compared with parameters such as Young’s modulus and tire pressure, the loading of loading of the proof loading verification vehicle would be the major factor on rolling soil settlement. Based on the results of this study, the recommend loading is 32 ton and tire pressure is 125 psi of the proof loading verification vehicle for Taoyuan area soil and the subgrade quality would be well controlled under this.
    Keywords: Proof rolling, ABAQUS and subgrade

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章、緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究流程 3 第二章、文獻回顧 5 2-1 路基土壤設計及施工要求 5 2-1-1 路基強度與滾壓驗證要求 5 2-2 滾壓驗證 7 2-2-1 滾壓驗證壓實 8 2-2-2 鋪面受力情形 9 2-2-3 設計與驗證強度之關係 10 2-2-4 滾壓機具速度與受力之關係 11 2-3 輪胎接觸壓力 11 2-3-1 壓力分佈 11 2-4 鋪面破壞模擬分析 14 2-4-1 KENLAYER程式簡介 14 2-4-2 ABAQUS程式簡介 17 2-5 土壤基本參數 20 2-5-1 回彈模數 22 2-5-2 楊氏係數 22 2-5-3 摩擦角 23 2-5-4 凝聚力 23 2-5-5 波松比 24 2-5-6 膨脹角 25 2-6 瀝青鋪面分析儀 26 第三章、研究方法 27 3-1 土壤材料性質試驗 29 3-1-1 土壤最佳含水量與密度關係試驗 30 3-1-2 加州承載比試驗 32 3-1-3 直接剪力試驗 33 3-1-4 無圍壓縮試驗 34 3-2 輪胎接觸壓力分析 35 3-2-1 感壓紙與載具配置 36 3-2-2 感壓紙測試 37 3-3 KENLAYER模擬分析 38 3-3-1 斷面設定 38 3-3-2 滾壓檢驗車輛設定 38 3-4 ABAQUS實驗室耦合測試 39 3-4-1 斷面設定 40 3-4-2 衝擊荷載耦合 41 3-4-2 滾動荷載耦合 42 3-4-2 胎壓控制耦合 43 3-5 ABAQUS模擬分析 43 3-5-1 衝擊荷載 44 3-5-2 滾動荷載 45 3-5-3 胎壓控制 46 第四章、研究成果分析 47 4-1 土壤材料性質試驗結果 47 4-1-1 土壤含水量及密度關係試驗 47 4-1-2 加州承載比試驗 48 4-1-3 直接剪力試驗 50 4-1-4 無圍壓縮試驗 50 4-1-5 小結 52 4-2 輪胎接觸壓力分析結果 53 4-2-1 一般小客車 53 4-2-2 承載高載重載具 54 4-3 ABAQUS實驗室藕合結果 55 4-3-1 衝擊荷載 56 4-3-2 滾動荷載 58 4-3-3 胎壓控制 59 4-4 現地滾壓驗證程式模擬結果 61 4-4-1 KENLAYER初步結果 61 4-4-2 ABAQUS模擬結果(土壤參數) 65 4-4-3 ABAQUS模擬結果(載具參數) 69 4-4-4 現地滾壓驗證強度範圍模擬 71 4-4-5 現地滾壓驗證載具配置 75 4-4-6 小結 81 第五章、結論與建議 83 5-1 結論 83 5-2 建議 84 參考文獻 85

    [1]林宏達,2017,「不飽和夯實紅土視凝聚力與剪力強度特性研究」,技術學刊第三十二卷第三期,pp. 177-185。
    [2]林樹豪、李梓賢、方豪、Lin, Shu-hao、Lee, Grey、Fang, Hou,2005,「ABAQUS於柔性鋪面分析之建立與驗證」,德霖學報,pp. 157-174。
    [3]行政院公共工程委員會,2021,「第02331章V4.0基地及路堤填築」,施工綱要規範。
    [4]郭俊宏,2017,「以 ETC 大數據結合 FWD 建立台灣區高速公路鋪面結構 評估準則之研究」,國立中央大學土木工程學系碩士論文,桃園。
    [5]馮天正,2000,「三維有限元素應用於柔性鋪面之非線性分析」,國立中央大學土木工程學系碩士論文,桃園。
    [6]馮天正,2000,「三維有限元素應用於柔性鋪面之非線性分析」,國立中央大學土木工程學系碩士論文,桃園。
    [7] AASHTO T340-10, (2015) “Determing Rutting Susceptibility of Hot Mix Asphalt (HMA) Using the Asphalt Pavement Analyzer (APA)”.
    [8] Al-Amoudi, O.S.B., Asi, I.M., Wahhab, A&Khan, Z.A. (2002). “Clegg Hammer—California-Bearing Ratio Correlations.” Journal of Materials in. Civil Engineering., Vol. 14, No.6, pp.512-523.
    [9]Bolton, M., (1986), “The strength and dilatancy of sands,” G´eotechnique.
    [10]Cao Peng, 2016, “Tire–Pavement Contact Stress with 3D Finite-Element Model: Part 1: Semi-Steel Radial Tires on Light Vehicles,” Journal of Testing and Evaluation.
    [11]Greg White (2007), “Design of Proof Rollin.g Regimes for Heavy Duty Aircraft Pavements”, 7th In.ternational Conference on the Bearin.g Capacity of Roads, Railways and Airfield.
    [12] Heuklelom, W. and A.J.G.Klomp, (1962), “Dynamic Testing as a means of controlling pavement during and after construction,” Proc., International Conference on the Structural Design of Asphalt Pavements.
    [13]Haichao Zhou, (2015), “Effect of Friction Model and Tire Maneuvering on Tire-Pavement Contact Stress” Advances in Materials Science and Engineering.
    [14] J.P. Hambleton & A. Drescher (2007), “Modelin.g test rollin.g on cohesive subgrades”, Advanced Characterisation of Pavement and Soil Engin.eerin.g Materials –Loizos, Scarpas & Al-Qadi (eds).
    [15]J.P. Hambleton & A. Drescher (2008), “Modelin.g wheel-in.duced ruttin.g in. soils: In.dentation”, Journal of Terramechanics 45 201–211.
    [16]Kandhal, P. S., and Cooley, L. A. (2003). “Accelerated laboratory ruttin.g tests: Asphalt pavement analyzer.” NCHRP Rep. 508, National Cooperative Highway Research Program, Washington, D.C
    [15] Minesota Department of Transportation, (2007), “Pavement Design.”
    [16] New South Wales Road & Maritime Services (2018), “Roads and Maritime Supplement to Austroads Guide to Pavement Technology Part 2: Pavement Structural Design”, RMS 11.050 Version 3.0.
    [17]New South Wales Road & Maritime Services (2013), “Proof Rollin.g test.” Test method T198.
    [18] Obrzud R. & Truty, A, (2012), “The hardening soil model-a practical guidebook,” Z Soil.PC 100701 report, revised 31.01.
    [19]Phillip S. Dunston, Antonio Bobet, Timothy B. McClure (2017), “Proof Rollin.g of Foundation Soil and Prepared Subgrade Durin.g Construction.” Join.t Transportation Research Program, FHWA/IN./JTRP-2017/16.
    [20]Sriparna Roy, Debjit Bhowmik (2018), “The effect of plastic strain. variation on nonlin.ear behavior of soil”, Department of Civil Engineering, National Institute of Technology Silchar, Assam, 788010.
    [21]The city of Columbus construction and materials specifications Item 204 (2012). “Subgrade Compaction and Proof Rollin.g / Test Rollin.g.”
    [22]Texas Department of Transportation, Item216 (2014), “Proof Rolling.”
    [23]The City of Columbus, (2018) “Construction and Material Specifications”.
    [24]U.S. Department of Transportation Federal Aviation Admin.istration (2018), “Standard Specifications for Construction of Airports, ” AC150/5370-10H.
    [25]U.S. Department of Transportation Federal Aviation Admin.istration (draft 2020), “Airport Pavement Design and Evaluation,” AC150/5320-6G.
    [26]W.J. TURNBULL (1960), “Proof-Rollin.g of Suhgrades, ” U.S. Army Engin.eers, Waterways Experiment Station.

    QR CODE
    :::