| 研究生: |
魏敏哲 Min-zhe Wei |
|---|---|
| 論文名稱: |
利用變壓吸附程序在常溫濃縮含有水汽之氣化合成氣中氫氣及捕獲二氧化碳 |
| 指導教授: |
楊閎舜
None 周正堂 Cheng-tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 240 |
| 中文關鍵詞: | 變壓吸附 、氫氣 、二氧化碳 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃煤氣化系統結合二氧化碳捕獲技術,乃是將氣化爐出來的合成氣經由水煤氣轉化反應後,透過冷卻器降溫再加以捕獲二氧化碳。藉由變壓吸附法可以純化高濃度的氫氣與捕獲大量的二氧化碳,前者用於發電而後者回收封存。
本研究利用數值模擬的方法,模擬於常溫下,在含有水蒸汽、一氧化碳、二氧化碳及氫氣混合氣中,利用兩階段雙塔之變壓吸附程序與活性碳AC5-KS的搭配,於第一階段進行氫氣純化及第二階段進行二氧化碳濃縮回收,並且探討各操作變數對模擬結果的影響,尋求最佳的分離操作條件。
第一階段H2-PSA雙塔八步驟最佳操作結果為氫氣純度達99.59%和回收率為86.17%,而二氧化碳回收率為99.23%。第二階段CO2-PSA雙塔六步驟最佳操作結果二氧化碳純度為90.49%和回收率為99.64%,而氫氣純度為94.82%。反應氣之出口氣體在常溫經過兩階段變壓吸附程序後,二氧化碳總回收率為98.87%。
Gasification system means that coal is transformed to synthesis gas (syngas), which is then converted to hydrogen and carbon dioxide via water gas shift reaction. Then, carbon dioxide is captured after the temperature of mixture gases are reduced by condenser. Pressure swing adsorption (PSA) can then be utilized to purify hydrogen to high concentration and to capture carbon dioxide. The former can generate electrical power, the latter can be recovered and stored.
This study plans to use a dual-bed PSA process with modified activated carbon AC5-KS to separate high-purity hydrogen and to capture carbon dioxide from syngas, which contains water vapor, carbon monoxide, carbon dioxide and hydrogen at room temperature. The optimal operating condition is discussed by varying the operating variables.
In this study, the optimal result of dual-bed 8-step PSA process in the first H2-PSA stage produces high-purity hydrogen of 99.59% with a recovery of 86.17%, and the carbon dioxide recovery is 99.23%. The optimal result of dual-bed 6-step PSA process in the second CO2-PSA stage generates carbon dioxide purity and recovery of 90.49% and 99.64%, respectively. The hydrogen purity is 94.82%. By two stage PSA process, the total carbon dioxide recovery from syngas is 99.23%.
[1] 經濟部能源局網站,能源統計年報。2012年6月19日,取自http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_year/main/EnergyYearMain.aspx?PageId=default
[2] 經濟部能源局網站,2007能源科技研究發展白皮書。2012年6月19日,取自http://www.moeaboe.gov.tw/Policy/PoMain.aspx?PageId=energytechwhitepaper
[3] P. Luby, “Zero Carbon Power Generation: IGCC as the Premium Option”, Petroleum & Coal, vol. 46, no. 1, pp. 1-16, 2004
[4] Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems, The United States Department of Energy, National Energy Technology Laboratory, DOE/NETL-401/080509, 2009
[5] C.W. Skarstrom, “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960
[6] P.G.D. Montgareuil and D. Domine, “Process for Separating a Binary Gaseous Mixture by Adsorption”, U.S. Patent 3,155,468, assigned to Societe L`Air Liquide, Paris, 1964
[7] R.T. Yang, Gas Separation by Adsorption Processes, Imperial College Press., London, 1997
[8] N.H. Berlin, “Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966
[9] G. Heinze, Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962
[10] D.E. Kowler and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AIChE J., vol. 31, no. 6, pp. 1207-1212, 1972
[11] T. Tamura, “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974
[12] A. Fuderer and E. Rudelstorfer, U.S. Patent 3,986,849, assigned to Union Carbide Corporation, 1976
[13] R. Kumar, W.C. Kratz, D.E. Guro, D.L. Rarig and W.P. Schmidt, “Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption”, Sep. Sci. Technol., vol. 27, no. 4, pp. 509-522, 1992
[14] D. Diagne, M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., vol. 27, no. 1, pp. 85-89, 1994
[15] B.K. Na, K.K. Koo, H. Lee and H.K. Song, “Effect of Rinse and Recycle Methods on The Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., vol. 41, no. 22, pp. 5498-5503, 2002
[16] C.H. Lee, J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA For Coke Oven Gas”, AIChE J., vol. 45, no. 3, pp. 535-545, 1999
[17] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, vol. 14, no. 4-5, pp. 575-582, 2008
[18] J.G. Jee, M.B. Kim and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., vol. 40, no. 3, pp. 868-878, 2001
[19] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of Dual-Bed Pressure Swing Adsorption For CO2 Recovery from Boiler Exhaust Gas”, Sep. Purif. Technol., vol. 24, no. 3, pp. 519-528, 2001
[20] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., vol. 17, no. 2, pp. 335-342, 1971
[21] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System CO2 in He, I”, Chem. Eng. Sci., vol. 27, no. 7, pp. 1449-1458, 1972
[22] E. Glueckauf and J.I. Coates, “Theory of Chromatography. Part IV. The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation”, J. Chem. Soc., pp. 1315-1321, 1947
[23] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Jpn., vol. 16, no. 2, pp. 114-119, 1983
[24] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., vol. 41, no. 5, pp. 1333-1343, 1986
[25] R.T. Yang and S.J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore-diffusion Model for Bulk Separation”, AIChE J., vol. 31, no. 11, pp. 1829-1842, 1985
[26] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., vol. 32, no. 3, pp. 397-410, 1986
[27] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., vol. 33, no. 6, pp. 1045-1049, 1987
[28] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., vol. 42, no. 8, pp. 2037-2043, 1987
[29] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., vol. 45, no. 1, pp. 107-115, 1990
[30] J. Yang, S. Han, C. Cho, C.H. Lee and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-Column PSA Process”, Separations Technology, vol. 5, no. 4, pp. 239-249, 1995
[31] J. Yang, C.H. Lee and J.W. Chang, “Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res., vol. 36, no. 7, pp. 2789-2798, 1997
[32] J.H. Park, H.T. Beum, J.N. Kim and S.H. Cho, “Numerical Analysis on The Power Consumption of The PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., vol. 41, no. 16, pp. 4122-4131, 2002
[33] J. Yang and C.H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas”, AIChE J., vol. 44, no. 6, pp. 1325-1334, 1998
[34] J.H. Park, J.N. Kim and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., vol. 46, no. 4, pp. 790-802, 2000
[35] C. Voss, “Applications of Pressure Swing Adsorption Technology”, Adsorption, vol. 11, no. 1, pp. 527-529, 2005
[36] Y.C. Xie, J.P. Zhang, J.G. Qiu, X.Z. Tong, J.P. Fu, G.. Yang, H.J. Yan and Y.Q. Tang, “Zeolites Modified by CuCl for Separating CO From Gas Mixtures Containing CO2”, Adsorption, vol. 3, no. 1, pp. 27-32, 1996
[37] N.N. Dutta and G.S. Patil, “Developments in CO Separation”, Gas Sep. Purif., vol. 9, no. 4, pp. 277-283, 1995
[38] L.Q. Zhu, J.L. Tu and Y.J. Shi, “Separation of CO-CO2-N2 Gas Mixture for High-Purity CO by Pressure Swing Adsorption”, Gas Sep. Purif., vol. 5, no. 3, pp. 173-176, 1991
[39] P. Xiao, S. Wilson, G. Xiao, R. Singh and P. Webley, “Novel Adsorption Processes for Carbon Dioxide Capture Within an IGCC Process”, Energy Procedia, vol. 1, no. 1, pp.631-638, 2009
[40] S. Cavenati, C.A. Grande and A.E. Rodrigues, “Layered Pressure Swing Adsorption for Methane Recovery From CH4/CO2/N2 Streams”, Adsorption, vol. 11, pp. 549-554, 2005
[41] S. Cavenati, C.A. Grande and A.E. Rodrigues, “Removal of Carbon Dioxide From Natural Gas by Vacuum Pressure Swing Adsorption”, Energy Fuels, vol. 20, no. 6, pp. 2648-2659, 2006
[42] C.A. Grande, F.V.S. Lopes, A.M. Ribeiro, J.M. Loureiro and A.E. Rodrigues, “Adsorption of Off-Gases From Steam Methane Reforming (H2, CO2, CH4, CO and N2) on Activated Carbon”, Sep. Sci. Technol., vol. 43, no. 6, pp. 1338-1364, 2008
[43] F.V.S. Lopes, C.A. Grande, A.M. Ribeiro, J.M. Loureiro, O. Evaggelos, V. Nikolakis and A.E. Rodrigues, “Adsorption of H2, CO2, CH4, CO, N2 and H2O in Activated Carbon and Zeolite for Hydrogen Production”, Sep. Sci. Technol., vol. 44, no. 5, pp. 1045-1073, 2009
[44] F.V.S. Lopes, C.A. Grande, A.M. Ribeiro, E.L.G. Oliveira, J.M. Loureiro and A.E. Rodrigues, “Enhancing Capacity of Activated Carbons for Hydrogen Purification”, Ind. Eng. Chem. Res., 48 (8), pp 3978–3990, 2009
[45] F.V.S. Lopes, C.A. Grande, A.M. Ribeiro, V.J.P. Vilar, J.M. Loureiro and A.E. Rodrigues, “Effect of Ion Exchange on the Adsorption of Steam Methane Reforming Off-Gases on Zeolite 13X”, J. Chem. Eng. Data, vol. 55, no. 1, pp. 184–195, 2010
[46] C. Shen, J. Yu, P. Li, C.A. Grande and A.E. Rodrigues, “Capture of CO2 From Flue Gas by Vacuum Pressure Swing Adsorption Using Activated Carbon Beads”, Adsorption, vol. 17, no. 1, pp. 179-188, 2011
[47] L. Wang, Z. Liu, P. Li, J. Yu and A.E. Rodrigues, “Experimental and Modeling Investigation on Post-combustion Carbon Dioxide Capture Using Zeolite 13X-APG by Hybrid VTSA Process”, Chem. Eng. J., vol. 197, no. 15, pp. 151-161, 2012
[48] D. Saha and S. Deng, “Adsorption Equilibria and Kinetics of Carbon Monoxide on Zeolite 5A, 13X, MOF-5, and MOF-177”, J. Chem. Eng. Data, vol. 54, no. 8, pp. 2245-2250, 2009
[49] Y. Wang and M.D. LeVan, “Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X and Silica Gel: Pure Components”, J. Chem. Eng. Data, vol. 54, no. 10, pp. 2839-2844, 2009
[50] W.G. Kim, J. Yang, S. Han, C. Cho, C.H. Lee and H. Lee, “Experimental and Theoretical Study on H2/CO2 Separation by a Five-Step One-Column PSA Process”, Korean J. of Chem. Eng., vol. 12, no. 5, pp 503-511, 1995
[51] A. Malek and S. Farooq, “Kinetics of Hydrocarbon Adsorption on Activated Carbon and Silica Gel” AIChE J., vol. 43, Issue 3, pp. 761–776, March 1997
[52] A. Gorbach, M. Stegmaier and G. Eigenberger, “Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A-Equilibria and Kinetics”, Adsorption, vol. 10, no. 1, pp.29–46, 2004
[53] D.F. Fairbanks and C.R. Wilke, “Diffusion Coefficients in Multicomponent Gas Mixtures”, Ind. Eng. Chem., vol. 42, no. 3, pp. 471–475, 1950
[54] C.R. Wilke, “Diffusional Properties of Multicomponent Gases”, Chem. Eng. Prog., vol. 46, pp 95–104, 1950
[55] E.N. Fuller, P.D. Schettler, and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., vol. 3, pp 222-227, 1965
[56] E.N. Fuller, P.D. Schettler, and J.C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem., vol. 58, no. 5, pp 18-27, 1966
[57] N. Wakao and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds. Correlation of Sherwood Numbers”, Chem. Eng. Sci., vol. 33, no. 10, pp. 1375–1384, 1978
[58] C. Shen, C.A. Grande, P. Li, J. Yu, A.E. Rodrigues, “Adsorption Equilibria and Kinetics of CO2 and N2 on Activated Carbon Beads”, Chem. Eng. J., vol. 160, pp 398-407, 2010
[59] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975
[60] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001
[61] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill, Inc., New York, 1954
[62] R.H. Perry, D.W. Green and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984
[63] A.M. Ribeiro, C.A. Grande, F.V.S. Lopes, J.M. Loureiro and A.E. Rodrigues, “Four Beds Pressure Swing Adsorption for Hydrogen Purification: Case of Humid Feed and Activated Carbon Beds”, AIChE J., vol. 55, no. 9, pp. 2292-2302, 2009
[64] J.M. Smith, H.C.V. Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, Inc., New York, 2001
[65] 陳穎信,「變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬」,國立中央大學,碩士論文,民國98年