跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂宗展
Zong-zhan Lu
論文名稱: 聯咪唑錸錯合物之自組裝合成、結構與性質研究
Self-assembly, Structures and Properties of Bisimidazole Rhenium Complexes
指導教授: 李光華
Kwang-hwa, Lii
呂光烈
Kuang-lieh, Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 97
語文別: 中文
論文頁數: 252
中文關鍵詞: 自組裝聯咪唑錸錯合物
外文關鍵詞: Bisimidazole, Rhenium Complexes, Self-assembly
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究包含三部分。
    第一部分是使用Re2(CO)10與4-(1-naphthylvinyl)pyridine (1,4-NVP) ,分別搭配1-butanol (n-BuOH)、1-decanol (n-DecOH)、2,2′-biimidazole (BImH2)、2,2′-Bis(4,5-dimethylimidazole) (BiDMImH2)或2,2′-bisbenzimidazole (BiBzImH2),於溶劑熱條件下自組裝合成,可得到cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1)、[Re(CO)3(1,4-NVP)]2(n-DecO)2 (2)、[Re(CO)3(1,4-NVP)]2BIm (3)、trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4)或trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) 。錯合物1-5經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,1、4和5之結構也以X光單晶繞射解析。可藉由紅外線共振吸收之C≡O特徵峰的分裂判斷錯合物2和3的順反構型。
    第二部分則使用Re2(CO)10與BImH2,分別搭配1,4-NVP或4,4′-dipyridyl (4,4′-dpy),於溶劑熱條件下自組裝合成,可得到fac-[Re(CO)3(1,4-NVP)]BImH (6)或(Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7),錯合物6和7經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以X光單晶繞射解析。兩錯合物都利用分子間氫鍵作用力形成二聚物。官能化的錯合物6具有抓取質子、氟離子辨識和順反式轉換的能力,可藉由核磁共振氫譜、 紫外-可見光吸收等方法鑑定。錯合物6也展現發光特性。
    第三部分使用Re2(CO)10與trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe),分別搭配BImH2、BiDMImH2或BiBzImH2,於溶劑熱條件下自組裝合成,可得到([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8)、([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9)與([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10)。錯合物8-10經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以單晶X光繞射法解析。錯合物8和10藉由可見光照射行[2 + 2] 光化二聚合反應,分別得到([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11)和([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane),反應具專一性而且過程屬單晶的轉換(single-crystal to single-crystal transformation)。錯合物11和12經由紅外線共振吸收、核磁共振氫譜、紫外-可見光吸收等方法鑑定,其結構也以X光單晶繞射解析。另外,錯合物8和10對光的敏感度高,若在溶液中反應,只需很短的時間即完成光化二聚合。此外,實驗結果意味著光化二聚合的難易程度似乎會受到遠端聯咪唑類配基上的取代基推拉電子效應所影響。


    The study of this thesis include three parts.
    The first part, complexes cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1), [Re(CO)3(1,4-NVP)]2(n-DecO)2 (2), [Re(CO)3(1,4-NVP)]2BIm (3), trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4) or trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) were successfully synthesized by treatment of Re2(CO)10 with 4-(1-naphthylvinyl)pyridine (1,4-NVP) and 1-butanol (n-BuOH), 1-decanol (n-DecOH), 2,2′-biimidazole (BImH2), 2,2′-bis(4,5-dimethylimidazole) (BiDMImH2) or 2,2′-bisbenzimidazole (BiBzImH2), respectively, under solvothermal conditions. The series of rhenium-based complexes 1-5 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures of complexes 1, 4, and 5 were further confirmed by single-crystal X-ray diffraction analysis. Complexes 2 and 3 can be recognized cis or trans conformation by means of knowing the splitting C≡O bands.
    The second part, complexes fac-[Re(CO)3(1,4-NVP)]BImH (6), or (Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7), were successfully synthesized by treatment of Re2(CO)10 with BImH2 or 1,4-NVP and 4,4′-dipyridyl (4,4′-dpy), respectively, under solvothermal conditions. The complexes were characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by X-ray single-crystal diffraction analysis. The functionalized complexe 6 has capabilities of probing proton, recognizing fluoride, and trans-to-cis isomerization and shows photoluminescence property.
    The last part, complexes ([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8), ([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9) or ([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10) were successfully synthesized by treatment of Re2(CO)10 with trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe) and BImH2, BiDMImH2 or BiBzImH2, respectively, under solvothermal conditions. The complexes 8-10 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by single-crystal X-ray diffraction analysis. Complexes 8 and 10 were practiced [2 + 2] photodimerization upon visible-light-irradiation leading to the specific complexes ([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11) and ([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane), accompanied by single-crystal to single-crystal transformation. The complexes were characterized using FT-IR, 1H NMR and UV-visible spectroscopic techniques. The structures were further confirmed by single-crystal X-ray diffraction analysis. In addition, complexes 8 and 10 can carry out photodimerization in the liquid state at once as a result of light-sensitized and the results suggest that the substituents on the bisimidazolate having electron-donor or electron-withdrawing effect seem to affect the capabilities of photodimerization.

    摘要 i ABSTRACT iii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xiv 方程式目錄 xv 第一章 緒論 1 1.1 超分子化學 1 1.1.1 Ion—ion interaction (100 ~ 350 kJ mol-1) 1 1.1.2 Ion—dipole interactions (50 ~ 200 kJ mol-1) 2 1.1.3 Dipole—dipole interactions (5 ~ 50 kJ mol-1) 2 1.1.4 Hydrogen bonding interactions (4 ~ 120 kJ mol-1) 3 1.1.5 π-π stacking (0 ~ 50 kJ mol-1) 4 1.1.6 van der Waals force (< 5 kJ mol-1) 5 1.1.7 Hydrophobic and hydrophilic effect 6 1.2 自組裝(self-assembly) 7 1.3 研究動機 12 1.3.1 利用分子間氫鍵作用力所合成的離子對、二聚體與網狀結構 12 1.3.2 金屬環錯合物(Metallacycle) 15 1.3.3 [2 + 2] photodimerization 21 1.4 合成策略 24 1.4.1 錸金屬的選用 24 1.4.2 聯咪唑有機配子的選用 25 第二章 實驗部份 26 2.1 儀器設備及實驗藥品 26 2.1.1 儀器設備 26 2.1.2 實驗藥品 27 2.2 水熱合成法(Hydrothermal synthesis) 28 2.3 有機配子 30 2.3.1 直接購買使用的有機配子 30 2.3.2 有機配子2,2′-biimidazole (BImH2)之合成 30 2.3.3 有機配子2,2′-bisbenzimidazole (BiBzImH2)之合成 31 2.4 錸錯合物之合成步驟 32 2.4.1 cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1) 32 2.4.2 [Re(CO)3(1,4-NVP)]2(n-DecO)2 (2) 33 2.4.3 [Re(CO)3(1,4-NVP)]2BIm (3) 34 2.4.4 trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4) 35 2.4.5 trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) 36 2.4.6 fac-[Re(CO)3(1,4-NVP)]BImH (6) 37 2.4.7 (Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7) 38 2.4.8 ([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8) 39 2.4.9 ([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9) 40 2.4.10 ([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10) 41 2.4.11 ([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11) 42 2.4.12 ([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) 42 2.5 錸錯合物之光物理實驗 45 2.5.1 紫外光/可見光光譜分析 45 2.5.2 螢光光譜分析 46 第三章 結果與討論 47 3.1  錸錯合物1-5的合成與構型分析 49 3.1.1 錸錯合物1和2的合成與解析 49 3.1.2 錸錯合物3-5合成與解析 54 3.1.3 錸錯合物1-5的綜合討論 64 3.2  錸錯合物6和7的合成與性質探討 66 3.2.1 錸錯合物6的合成與解析 66 3.2.2 錸錯合物7的合成與解析 72 3.2.3 錸錯合物6和7的綜合討論 77 3.3  錸錯合物8-12的合成與性質探討 98 3.3.1 錸錯合物8-10的合成與解析 98 3.3.2 錸錯合物11和12的合成與綜合討論 110 第四章 結論 128 參考文獻 130 附錄目錄 138

    [1]Lehn, J. M. Science 1985, 227, 849.
    [2]Lehn, J. M. Supramolecular Chemistry:Concepts and Perspectives, New York, 1995.
    [3]Berg, J. M.; Tymoczko, Stryer, J. L.; L. Biochemistry, Freeman and Company, New York, 2001.
    [4]Graham Solomons, T. W. Organic Chemistry, John Wiley & Sons, 1994.
    [5]Schneider, H. J.; Yatsimirsky, A. K. Principles and methods in supramocular chemistry, Wiley, 1999.
    [6]Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
    [7]Fujita, M; Fujita, N.; Oguraß, K.; Yamaguchi, K. Nature 1999, 400 , 52.
    [8]Dolomanov, O. V.; Blake, A. J.; Champness, N. R.; Schröder, M.; Wilson, C. Chem. Commun. 2003, 6, 682.
    [9](a) Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Chem. Commun. 2008, 36, 4267. (b) Cui, Y.; Niu, Y.-L.; Cao, M.-L.; Wang, K.; Mo, H.-J.; Zhong, Y.-R.; Ye, B.-H. Inorg. Chem. 2008, 47, 5616. (c) Derossi, S.; Adams, H.; Ward, M. D. J. Chem. Soc., Dalton Trans. 2007, 1, 33 (d) Ion, L.; Morales, D.; Nieto, S.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D.; Kowenicki, R. A.; McPartlin, M. Inorg. Chem. 2007, 46, 2846. (e) Halbauer, K.; Göbel, A.; Sterzik, A.; Görls, H.; Rau, S.; Imhof, W. Eur. J. Inorg. Chem. 2007, 11, 1508. (f) Sang, R.-L.; Xu, L. Eur. J. Inorg. Chem. 2006, 6, 1260. (g) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2000, 39, 4886. (h) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2001, 40, 105. (i) Cui, Y.; Mo, H.-J.; Chen, J.-C.; Niu, Y.-L.; Zhong, Y.-R.; Zheng, K.-C.; Ye, B.-H. Inorg. Chem. 2007, 46, 6427.
    [10](a) Kaiser, S. W.; Saillant, R. B.; Butler, W. M.; Rasmussen, P. G. Inorg. Chem. 1976, 15, 2681. (b) Usón, R.; Gimeno, J.; Ora, L. A.; Martínez de llarduya, J. M.; Cabeza, J. A. J. Chem. Soc., Dalton Trans. 1983, 8, 1729. (c) Gamasa, M. P.; Garcia, E.; Gimeno, J. J. Organomet. Chem. 1986, 307, 39. (d) Ora, L. A.; Carmona, D.; Lamata, M. P.; Tiripicchio, A.; Lahoz, F. J. J. Chem. Soc., Dalton Trans. 1986, 1, 15. (e) Rillema, D. P.; Sahai, R.; Matthews, P.; Edwards, A. K.; Shaver, R. J.; Morgan, L. Inorg. Chem. 1990, 29, 167. (f) Garcia, M. P.; López, A. M.; Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A. J. Chem. Soc., Dalton Trans. 1990, 11, 3465. (g) Kandil, S. S.; Madkour, L. H.; Spectrosc. Lett. 1993, 26, 535. (h) Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A.; Oňate, E.; Ruiz, N. Inorg. Chem. 1994, 33, 787. (i) Kanno, H.; Manriki, S.; Yamazaki, E.; Utsuno, S.; Fujita, J. Bull. Chem. Soc. Jpn. 1996, 69, 1981. (j) Esteruelas, M. A.; Lahoz, F. J.; López, A. M.; Oňate, E.; Oro, L. A.; Ruiz, N.; Soda, E.; Tolosa, J. Inorg. Chem. 1996, 35, 7811. (k) Tadokoro, M.; Toyoda, J.; Isobe, K.; Itoh, T.; Miyazaki, A.; Enoki, T.; Nakasuji, K. Chem. Lett. 1995, 24, 613. (l) Saraiva, M. S.; Quintal, S.; Portugal, F. C. M.; Lopes, T. A.; Félix, V.; Nogueira, J. M. F.; Meireles, M.; Drew, M. G. B.; Calhorda, M. J. J. Organomet. Chem. 2008, 693, 3411. (m) Fortin, S. ; Fabre, P.-L.; Dartiguenave, M.; Beauchamp, A. L. J. Chem. Soc., Dalton Trans. 2001, 23, 3520. (n) Tadokoro, M.; Inoue, T.; Tamaki, S.; Fujii, K.; Isogai, K.; Nakazawa, H.; Takeda, S.; Isobe, K.; Koga, N.; Ichimura, A.; Nakasuji, K. Angew. Chem., Int. Ed. 2007, 46, 5938.
    [11](a) Tadokoro, M.; Isobe, K.; Uekusa, H.; Ohashi, Y.; Toyoda, J.; Tashiro, K.; Nakasuji, K. Angew. Chem., Int. Ed. 1998, 38, 95. (b) Lorente, M. A. M.; Dahan, F.; Petrouleas, V.; Bousseksou, A.; Tuchagues, J.-P. Inorg. Chem. 1995, 34, 5346. (c) Öhrström, L.; Larsson, K.; Borg, S.; Norberg, S. T. Chem. Eur. J. 2001, 7, 4805. (d) Öhrström, L.; Larsson, K. J. Chem. Soc., Dalton Trans. 2004, 3, 347. (e) Ding, B.-B.; Weng, Y.-Q.; Mao, Z.-W.; Lam, C.-K.; Chen, X.-M.; Ye, B.-H. Inorg. Chem. 2005, 44, 8836. (f) Mo, H.-J.; Zhong, Y.-R.; Cao, M.-L.; Ou, Y.-C.; Ye, B.-H. Cryst. Growth Des. 2009, 9, 488.
    [12](a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371. (b) Takaoka, K.; Kawano, M.; Hozumi, T.; Ohkoshi, S.-I.; Fujita, M. Inorg. Chem. 2006, 45, 3976. (c) Yoshizawa, M.; Kusukawa, T.; Kawano, M.; Ohhara, T.; Tanaka, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 2798. (d) Tashiro, S.; Tominaga, M.; Kawano, M.; Therrien, B.; Ozeki, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 4546. (e) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 10800. (f) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950.
    [13](a) Fujita, K.-I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. (b) Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850. (c) Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 3816. (d) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000. (e) Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652. (f) Yamauchi, Y.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 5832.
    [14](a) Kaim, W.; Schwederski, B.; Dogan, A.; Fiedler, J.; Kuehl, C. J.; Stang, P. J. Inorg. Chem. 2002, 41, 4025. (b) Deak, A.; Megyes, T.; Tarkanyi, G.; Kiraly, P.; Biczok, L.; Palinkas, G.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 12668. (c) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187. (d) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634. (e) Yang, H.-B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 839. (f) Li, S.-S.; Yan, H.-J.; Wan, L.-J.; Yang, H.-B.; Northrop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 9268. (g) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. J. Org. Chem. 2006, 71, 4155. (h) Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. (i) Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.; Stang, P. J. J. Org. Chem. 2006, 71, 6623. (j) Yang, H.-B.; Ghosh, K.; Arif, A. M.; Stang, P. J. J. Org. Chem. 2006, 71, 9464. (k) Yang, H.-B.; Das, N.; F. H.; Hawkridge, A. M.; Dıaz, D. D.; Arif, A. M.; Finn, M. G.; Muddiman, D. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6644. (l) Northrop, B. H.; Glockner, A.; Stang, P. J. J. Org. Chem. 2008, 73, 1787. (m) Das, N.; Ghosh, A.; Singh, O. M.; Stang, P. J. Org. Lett. 2006, 8, 1701. (n) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Stang, P. J. Org. Lett. 2007, 9, 1561. (o) Yang, H.-B.; Ghosh, K.; Das, N.; Stang, P. J. Org. Lett. 2006, 8, 3991.
    [15](a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (b) Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. (d) Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483. (c) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 6, 509. (d) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611.
    [16](a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975. (b) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M. Angew. Chem., Int. Ed. 2004, 43, 3644.
    [17](a) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A. Inorg. Chem. 2000, 39, 3432 (b) Liu, X.; Eisenberg, A. H.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2001, 40, 2940 (c) Gianneschi, N. C.; Mirkin, C. A. Inorg. Chem. 2002, 41, 5326 (d) Masar, M. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2004, 43, 4693 (e) Holliday, B. J.; Farrell, J. R.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 6316 (f) Jeon, Y.-M.; Heo, J.; Brown, A. M.; Mirkin, C. A. Organometallics 2006, 25, 2729 (g) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316 (h) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 1644 (i) Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182 (j) Holliday, B. J.; Arnold, F. P.; Mirkin, C. A. J. Phys. Chem. A 2003, 107, 2737 (k) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052.
    [18]Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y.-R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
    [19]Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652.
    [20]Khoshbin, M. S.; Ovchinnikov, M. V.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2005. 44, 496.
    [21](a) Rajendran, T.; Manimaran, B.; Lee, F.-Y.; Lee, G.-H.; Peng, S.-M.; Wang, C. M.; Lu, K.-L. Inorg. Chem. 2000, 39, 2016. (b) Rajendran, T.; Manimaran, B.; Liao, R.-T.; Lin, R.-J.; Thanasekaran, P.; Lee, G.-H.; Peng, S.-M.; Liu, Y.-H.; Chang, I.-J.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2003, 42, 6388.
    [22]Manimaran, B.; Rajendran, T.; Lu, Y.-L.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Chem. Soc., Dalton Trans. 2001, 5, 515.
    [23]Sathiyendiran, M.; Liao, R.-T.; Thanasekaran, P.; Luo, T.-T.; Venkataramanan, N. S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 10052.
    [24]Liao, R.-T.; Yang, W.-C.; Thanasekaran, P.; Tsai, C.-C.; Sathiyendiran, M.; Liu, Y.-H.; Rajendran, T.; Lin, H.-M.; Tseng, T.-W.; Lu, K.-L. Chem. Commun. 2008, 27, 3175.
    [25](a) Li, H.; Eddaoudi, M.; O’Keefe, M.; Yaghi, O. M. Nature 1999, 402, 276. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. (c) Lee, E. Y.; Suh, M. P. Angew. Chem., Int. Ed. 2004, 43, 2798. (d) Iordanidis, L.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 2000, 39, 1928. (e) Iordanidis, L.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 8319. (f) Rather, B.; Zaworotoko, M. J. Chem. Commun. 2003, 7, 830. (g) Biradha, K.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 3392. (h) Ranford, J. D.; Vittal, J. J.; Wu, D. Angew. Chem., Int. Ed. 1998, 37, 1114. (i) Ranford, J. D.; Vittal, J. J.; Wu, D.; Yang, X. Angew. Chem., Int. Ed. 1999, 38, 3498. (j) Chen, C.-L.; Goforth, A. M.; Smith, M. D.; Su, C.-Y.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2005, 44, 6673. (k) Kumar, D.; Jose, D. A.; Dastidar, A. Das, P. Inorg. Chem. 2005, 44, 6933. (l) Ma, J. P.; Dong, Y.-B.; Huang, R. Q.; Smith, D. M.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143. (m) Chang, J.-P.; Lin, Y.-Y.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162.
    [26](a) Schmidt, G. M. J. Chem. Soc. 1964, 2014. (b) Schmidt, G. M. Pure Appl. Chem. 1971, 27, 647. (c) Wegner, G. Pure Appl. Chem. 1977, 49, 443. (d) Photochemistry in Organized and Constrained Media (Ed.: V. Ramamurthy), VCH, New York, 1991. (e) Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433.
    [27](a) Theocharis, C. R.; Jones, W. in Organic Solid State Chemistry (Ed.: G. R. Desiraju), Elsevier, 1987, chap. 2, pp. 47. (b) Wagner, P.; Park B.-S. in Organic Photochemistry, Vol. 11 (Ed.:A. Padwa), Dekker, New York, 1991, chap. 4 (c) Jones, W. Organic Molecular Solids: Properties and Applications, CRCPress, Boca Raton, FL, 1997 (d) Organic Solid State Reactions (Ed.: F. Toda), Top. Curr. Chem. Vol. 254, 2005. (e) Keating, A. E.; Garcia-Garibay M. A. in Organic and Inorganic Photochemistry (Eds.: V. Ramamurthy, K. S. Schanze), Dekker, NewYork, 1998, pp. 195. (f) Braga, D.; Grepioni, F. Angew. Chem., Int. Ed. 2004, 43, 4002. (g) Matsumoto, A. Top. Curr. Chem. 2005, 254, 263. (h) Dilling, W. L. Chem. Rev. 1983, 83, 3. (i) Maekawa, Y.; Kato, S.; Saigo, K.; Hasegawa, M. Macromolecules 1991, 24, 2314. (j) Caronna, T.; Liantonia, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2004, 126, 4500.
    [28](a) MacGillivray, L. R.; Papaefstathiou, G. S.; Friščič, T.; Varshney, D.B.; Hamilton, T. D. Top. Curr. Chem. 2005, 248, 201. (b) Varshney, D.B.; Gao, X.; Friščič, T.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2006, 45, 646. (c) Atkinson, M. B. J.; Bučar, D.-K.; Sokolov, A. N.; Friščič, T.; Robinson, C. N.; Bilal, M. Y.; Sinada, N. G.; Chevannes, A.; MacGillivray, L. R. Chem. Commun. 2008, 44, 5713. (d) Papaefstathiou, G. S.; Zhong, Z.; Geng L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158. (e) Peedikakkal, A. M. P.; Koh, L. L.; Vittal, J. J. Chem. Commun. 2008, 4, 441. (f) Nagarathinam, M.; Vittal, J. J. Chem. Commun. 2008, 4, 438. (g) Lee, J. Y.; Hong, S. J.; Kim, C.; Kim, Y. J. Chem. Soc., Dalton Trans. 2005, 23, 3716. (h) Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.; Schrőder, M. Chem. Commun. 1997, 17, 1675.
    [29](a) Chu, Q.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2005, 44, 3569. (b) Papaefstathiou, G. S.; Georgia, I. G.; Friščič, T.; MacGillivray, L.R. Chem. Commun. 2005, 31, 3974. (c) Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. (d) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337. (e) Papaefsthathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R. J. Am.Chem. Soc. 2004, 126, 9158. (f) Theocharis, C. R.; Clark, A. M.; Hopkin, S. E.; Jones, P. Mol. Cryst. Liq. Cryst. 1988, 156(Pt.A), 85. (g) Friščič, T.; MacGillivray, L. R. Chem. Commun. 2005, 46, 5748.
    [30]Tadokoro, M.; Nakasuji, K. Coord. Chem. Rev. 2000, 198, 205.
    [31](a) 李光華, 化學(Chemistry, The Chinese Chem. Soc. Taiwan China) 1994, 52, 405. (b) Fajita, M.; Kwon, Y. J.; Washizu S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (c) West, A. R. Solid State Chemistry and it’s Applications. John Wiley & Son Ltd. Singapore, 1984. (d) Raberau, A. Angew. Chem., Int. Ed. 1985, 24, 1026.
    [32]Xiao, J.-C.; Shreeve, J. M. J. Org. Chem. 2005, 70, 3072.
    [33]Yin, J.; Elsenbaumer, R. L. J. Org. Chem. 2005, 70, 9436.
    [34]曾宜秀 國立台灣師範大學化學系研究所碩士論文 2008.
    [35](a) Dinolfo, P. H.; Benkstein, K. D.; Stern, C. L.; Hupp J. T. Inorg. Chem. 2005, 44, 8707. (b) Dinolfo, P. H.; Williams, M. E.; Stern, C. L.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 12989.
    [36]Malarski, Z.; Sobczyk, L. Spectrochem. Acta. 48A, 1992, 519.
    [37]Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850.
    [38]Patrocínio, A. O.T.; Murakami Iha N. Y. Inorg. Chem. 2008, 47, 10851.
    [39](a) PAC, 2007, 79, 293 on page 359. (b) http://en.wikipedia.org/wiki/Isosbestic_point.
    [40](a) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070. (b) Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Angew. Chem., Int. Ed. 2000, 39, 2891. (c) Thanasekaran, P.; Wu, J.-Y.; Manimaran, B.; Rajendran, T.; Chang, I-J.; Rajagopal, S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Phys. Chem. A, 2007, 111, 10953. (d) Thanasekaran, P.; Liao, R.-T.; Manimaran, B.; Liu, Y.-H.; Chou, P.-T.; Rajagopal, S.; Lu, K.-L. J. Phys. Chem. A, 2006, 110, 10683. (e) Bhattacharya, D.; Sathiyendiran, M.; Luo, T.-T.; Chang, C.-H.; Cheng, Y.-H.; Lin, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2009, 48, 3731. (f) Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang, I-J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2002, 41, 5323. (g) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070.
    [41]Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Wang, G.-L.; Jin, G.-X. Chem. Commun. 2008, 15, 1807.

    QR CODE
    :::