| 研究生: |
呂宗展 Zong-zhan Lu |
|---|---|
| 論文名稱: |
聯咪唑錸錯合物之自組裝合成、結構與性質研究 Self-assembly, Structures and Properties of Bisimidazole Rhenium Complexes |
| 指導教授: |
李光華
Kwang-hwa, Lii 呂光烈 Kuang-lieh, Lu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 252 |
| 中文關鍵詞: | 自組裝 、聯咪唑 、錸錯合物 |
| 外文關鍵詞: | Bisimidazole, Rhenium Complexes, Self-assembly |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究包含三部分。
第一部分是使用Re2(CO)10與4-(1-naphthylvinyl)pyridine (1,4-NVP) ,分別搭配1-butanol (n-BuOH)、1-decanol (n-DecOH)、2,2′-biimidazole (BImH2)、2,2′-Bis(4,5-dimethylimidazole) (BiDMImH2)或2,2′-bisbenzimidazole (BiBzImH2),於溶劑熱條件下自組裝合成,可得到cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1)、[Re(CO)3(1,4-NVP)]2(n-DecO)2 (2)、[Re(CO)3(1,4-NVP)]2BIm (3)、trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4)或trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) 。錯合物1-5經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,1、4和5之結構也以X光單晶繞射解析。可藉由紅外線共振吸收之C≡O特徵峰的分裂判斷錯合物2和3的順反構型。
第二部分則使用Re2(CO)10與BImH2,分別搭配1,4-NVP或4,4′-dipyridyl (4,4′-dpy),於溶劑熱條件下自組裝合成,可得到fac-[Re(CO)3(1,4-NVP)]BImH (6)或(Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7),錯合物6和7經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以X光單晶繞射解析。兩錯合物都利用分子間氫鍵作用力形成二聚物。官能化的錯合物6具有抓取質子、氟離子辨識和順反式轉換的能力,可藉由核磁共振氫譜、 紫外-可見光吸收等方法鑑定。錯合物6也展現發光特性。
第三部分使用Re2(CO)10與trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe),分別搭配BImH2、BiDMImH2或BiBzImH2,於溶劑熱條件下自組裝合成,可得到([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8)、([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9)與([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10)。錯合物8-10經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以單晶X光繞射法解析。錯合物8和10藉由可見光照射行[2 + 2] 光化二聚合反應,分別得到([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11)和([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane),反應具專一性而且過程屬單晶的轉換(single-crystal to single-crystal transformation)。錯合物11和12經由紅外線共振吸收、核磁共振氫譜、紫外-可見光吸收等方法鑑定,其結構也以X光單晶繞射解析。另外,錯合物8和10對光的敏感度高,若在溶液中反應,只需很短的時間即完成光化二聚合。此外,實驗結果意味著光化二聚合的難易程度似乎會受到遠端聯咪唑類配基上的取代基推拉電子效應所影響。
The study of this thesis include three parts.
The first part, complexes cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1), [Re(CO)3(1,4-NVP)]2(n-DecO)2 (2), [Re(CO)3(1,4-NVP)]2BIm (3), trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4) or trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) were successfully synthesized by treatment of Re2(CO)10 with 4-(1-naphthylvinyl)pyridine (1,4-NVP) and 1-butanol (n-BuOH), 1-decanol (n-DecOH), 2,2′-biimidazole (BImH2), 2,2′-bis(4,5-dimethylimidazole) (BiDMImH2) or 2,2′-bisbenzimidazole (BiBzImH2), respectively, under solvothermal conditions. The series of rhenium-based complexes 1-5 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures of complexes 1, 4, and 5 were further confirmed by single-crystal X-ray diffraction analysis. Complexes 2 and 3 can be recognized cis or trans conformation by means of knowing the splitting C≡O bands.
The second part, complexes fac-[Re(CO)3(1,4-NVP)]BImH (6), or (Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7), were successfully synthesized by treatment of Re2(CO)10 with BImH2 or 1,4-NVP and 4,4′-dipyridyl (4,4′-dpy), respectively, under solvothermal conditions. The complexes were characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by X-ray single-crystal diffraction analysis. The functionalized complexe 6 has capabilities of probing proton, recognizing fluoride, and trans-to-cis isomerization and shows photoluminescence property.
The last part, complexes ([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8), ([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9) or ([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10) were successfully synthesized by treatment of Re2(CO)10 with trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe) and BImH2, BiDMImH2 or BiBzImH2, respectively, under solvothermal conditions. The complexes 8-10 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by single-crystal X-ray diffraction analysis. Complexes 8 and 10 were practiced [2 + 2] photodimerization upon visible-light-irradiation leading to the specific complexes ([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11) and ([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane), accompanied by single-crystal to single-crystal transformation. The complexes were characterized using FT-IR, 1H NMR and UV-visible spectroscopic techniques. The structures were further confirmed by single-crystal X-ray diffraction analysis. In addition, complexes 8 and 10 can carry out photodimerization in the liquid state at once as a result of light-sensitized and the results suggest that the substituents on the bisimidazolate having electron-donor or electron-withdrawing effect seem to affect the capabilities of photodimerization.
[1]Lehn, J. M. Science 1985, 227, 849.
[2]Lehn, J. M. Supramolecular Chemistry:Concepts and Perspectives, New York, 1995.
[3]Berg, J. M.; Tymoczko, Stryer, J. L.; L. Biochemistry, Freeman and Company, New York, 2001.
[4]Graham Solomons, T. W. Organic Chemistry, John Wiley & Sons, 1994.
[5]Schneider, H. J.; Yatsimirsky, A. K. Principles and methods in supramocular chemistry, Wiley, 1999.
[6]Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
[7]Fujita, M; Fujita, N.; Oguraß, K.; Yamaguchi, K. Nature 1999, 400 , 52.
[8]Dolomanov, O. V.; Blake, A. J.; Champness, N. R.; Schröder, M.; Wilson, C. Chem. Commun. 2003, 6, 682.
[9](a) Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Chem. Commun. 2008, 36, 4267. (b) Cui, Y.; Niu, Y.-L.; Cao, M.-L.; Wang, K.; Mo, H.-J.; Zhong, Y.-R.; Ye, B.-H. Inorg. Chem. 2008, 47, 5616. (c) Derossi, S.; Adams, H.; Ward, M. D. J. Chem. Soc., Dalton Trans. 2007, 1, 33 (d) Ion, L.; Morales, D.; Nieto, S.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D.; Kowenicki, R. A.; McPartlin, M. Inorg. Chem. 2007, 46, 2846. (e) Halbauer, K.; Göbel, A.; Sterzik, A.; Görls, H.; Rau, S.; Imhof, W. Eur. J. Inorg. Chem. 2007, 11, 1508. (f) Sang, R.-L.; Xu, L. Eur. J. Inorg. Chem. 2006, 6, 1260. (g) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2000, 39, 4886. (h) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2001, 40, 105. (i) Cui, Y.; Mo, H.-J.; Chen, J.-C.; Niu, Y.-L.; Zhong, Y.-R.; Zheng, K.-C.; Ye, B.-H. Inorg. Chem. 2007, 46, 6427.
[10](a) Kaiser, S. W.; Saillant, R. B.; Butler, W. M.; Rasmussen, P. G. Inorg. Chem. 1976, 15, 2681. (b) Usón, R.; Gimeno, J.; Ora, L. A.; Martínez de llarduya, J. M.; Cabeza, J. A. J. Chem. Soc., Dalton Trans. 1983, 8, 1729. (c) Gamasa, M. P.; Garcia, E.; Gimeno, J. J. Organomet. Chem. 1986, 307, 39. (d) Ora, L. A.; Carmona, D.; Lamata, M. P.; Tiripicchio, A.; Lahoz, F. J. J. Chem. Soc., Dalton Trans. 1986, 1, 15. (e) Rillema, D. P.; Sahai, R.; Matthews, P.; Edwards, A. K.; Shaver, R. J.; Morgan, L. Inorg. Chem. 1990, 29, 167. (f) Garcia, M. P.; López, A. M.; Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A. J. Chem. Soc., Dalton Trans. 1990, 11, 3465. (g) Kandil, S. S.; Madkour, L. H.; Spectrosc. Lett. 1993, 26, 535. (h) Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A.; Oňate, E.; Ruiz, N. Inorg. Chem. 1994, 33, 787. (i) Kanno, H.; Manriki, S.; Yamazaki, E.; Utsuno, S.; Fujita, J. Bull. Chem. Soc. Jpn. 1996, 69, 1981. (j) Esteruelas, M. A.; Lahoz, F. J.; López, A. M.; Oňate, E.; Oro, L. A.; Ruiz, N.; Soda, E.; Tolosa, J. Inorg. Chem. 1996, 35, 7811. (k) Tadokoro, M.; Toyoda, J.; Isobe, K.; Itoh, T.; Miyazaki, A.; Enoki, T.; Nakasuji, K. Chem. Lett. 1995, 24, 613. (l) Saraiva, M. S.; Quintal, S.; Portugal, F. C. M.; Lopes, T. A.; Félix, V.; Nogueira, J. M. F.; Meireles, M.; Drew, M. G. B.; Calhorda, M. J. J. Organomet. Chem. 2008, 693, 3411. (m) Fortin, S. ; Fabre, P.-L.; Dartiguenave, M.; Beauchamp, A. L. J. Chem. Soc., Dalton Trans. 2001, 23, 3520. (n) Tadokoro, M.; Inoue, T.; Tamaki, S.; Fujii, K.; Isogai, K.; Nakazawa, H.; Takeda, S.; Isobe, K.; Koga, N.; Ichimura, A.; Nakasuji, K. Angew. Chem., Int. Ed. 2007, 46, 5938.
[11](a) Tadokoro, M.; Isobe, K.; Uekusa, H.; Ohashi, Y.; Toyoda, J.; Tashiro, K.; Nakasuji, K. Angew. Chem., Int. Ed. 1998, 38, 95. (b) Lorente, M. A. M.; Dahan, F.; Petrouleas, V.; Bousseksou, A.; Tuchagues, J.-P. Inorg. Chem. 1995, 34, 5346. (c) Öhrström, L.; Larsson, K.; Borg, S.; Norberg, S. T. Chem. Eur. J. 2001, 7, 4805. (d) Öhrström, L.; Larsson, K. J. Chem. Soc., Dalton Trans. 2004, 3, 347. (e) Ding, B.-B.; Weng, Y.-Q.; Mao, Z.-W.; Lam, C.-K.; Chen, X.-M.; Ye, B.-H. Inorg. Chem. 2005, 44, 8836. (f) Mo, H.-J.; Zhong, Y.-R.; Cao, M.-L.; Ou, Y.-C.; Ye, B.-H. Cryst. Growth Des. 2009, 9, 488.
[12](a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371. (b) Takaoka, K.; Kawano, M.; Hozumi, T.; Ohkoshi, S.-I.; Fujita, M. Inorg. Chem. 2006, 45, 3976. (c) Yoshizawa, M.; Kusukawa, T.; Kawano, M.; Ohhara, T.; Tanaka, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 2798. (d) Tashiro, S.; Tominaga, M.; Kawano, M.; Therrien, B.; Ozeki, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 4546. (e) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 10800. (f) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950.
[13](a) Fujita, K.-I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. (b) Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850. (c) Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 3816. (d) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000. (e) Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652. (f) Yamauchi, Y.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 5832.
[14](a) Kaim, W.; Schwederski, B.; Dogan, A.; Fiedler, J.; Kuehl, C. J.; Stang, P. J. Inorg. Chem. 2002, 41, 4025. (b) Deak, A.; Megyes, T.; Tarkanyi, G.; Kiraly, P.; Biczok, L.; Palinkas, G.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 12668. (c) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187. (d) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634. (e) Yang, H.-B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 839. (f) Li, S.-S.; Yan, H.-J.; Wan, L.-J.; Yang, H.-B.; Northrop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 9268. (g) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. J. Org. Chem. 2006, 71, 4155. (h) Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. (i) Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.; Stang, P. J. J. Org. Chem. 2006, 71, 6623. (j) Yang, H.-B.; Ghosh, K.; Arif, A. M.; Stang, P. J. J. Org. Chem. 2006, 71, 9464. (k) Yang, H.-B.; Das, N.; F. H.; Hawkridge, A. M.; Dıaz, D. D.; Arif, A. M.; Finn, M. G.; Muddiman, D. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6644. (l) Northrop, B. H.; Glockner, A.; Stang, P. J. J. Org. Chem. 2008, 73, 1787. (m) Das, N.; Ghosh, A.; Singh, O. M.; Stang, P. J. Org. Lett. 2006, 8, 1701. (n) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Stang, P. J. Org. Lett. 2007, 9, 1561. (o) Yang, H.-B.; Ghosh, K.; Das, N.; Stang, P. J. Org. Lett. 2006, 8, 3991.
[15](a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (b) Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. (d) Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483. (c) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 6, 509. (d) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611.
[16](a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975. (b) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M. Angew. Chem., Int. Ed. 2004, 43, 3644.
[17](a) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A. Inorg. Chem. 2000, 39, 3432 (b) Liu, X.; Eisenberg, A. H.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2001, 40, 2940 (c) Gianneschi, N. C.; Mirkin, C. A. Inorg. Chem. 2002, 41, 5326 (d) Masar, M. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2004, 43, 4693 (e) Holliday, B. J.; Farrell, J. R.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 6316 (f) Jeon, Y.-M.; Heo, J.; Brown, A. M.; Mirkin, C. A. Organometallics 2006, 25, 2729 (g) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316 (h) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 1644 (i) Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182 (j) Holliday, B. J.; Arnold, F. P.; Mirkin, C. A. J. Phys. Chem. A 2003, 107, 2737 (k) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052.
[18]Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y.-R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
[19]Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652.
[20]Khoshbin, M. S.; Ovchinnikov, M. V.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2005. 44, 496.
[21](a) Rajendran, T.; Manimaran, B.; Lee, F.-Y.; Lee, G.-H.; Peng, S.-M.; Wang, C. M.; Lu, K.-L. Inorg. Chem. 2000, 39, 2016. (b) Rajendran, T.; Manimaran, B.; Liao, R.-T.; Lin, R.-J.; Thanasekaran, P.; Lee, G.-H.; Peng, S.-M.; Liu, Y.-H.; Chang, I.-J.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2003, 42, 6388.
[22]Manimaran, B.; Rajendran, T.; Lu, Y.-L.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Chem. Soc., Dalton Trans. 2001, 5, 515.
[23]Sathiyendiran, M.; Liao, R.-T.; Thanasekaran, P.; Luo, T.-T.; Venkataramanan, N. S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 10052.
[24]Liao, R.-T.; Yang, W.-C.; Thanasekaran, P.; Tsai, C.-C.; Sathiyendiran, M.; Liu, Y.-H.; Rajendran, T.; Lin, H.-M.; Tseng, T.-W.; Lu, K.-L. Chem. Commun. 2008, 27, 3175.
[25](a) Li, H.; Eddaoudi, M.; O’Keefe, M.; Yaghi, O. M. Nature 1999, 402, 276. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. (c) Lee, E. Y.; Suh, M. P. Angew. Chem., Int. Ed. 2004, 43, 2798. (d) Iordanidis, L.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 2000, 39, 1928. (e) Iordanidis, L.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 8319. (f) Rather, B.; Zaworotoko, M. J. Chem. Commun. 2003, 7, 830. (g) Biradha, K.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 3392. (h) Ranford, J. D.; Vittal, J. J.; Wu, D. Angew. Chem., Int. Ed. 1998, 37, 1114. (i) Ranford, J. D.; Vittal, J. J.; Wu, D.; Yang, X. Angew. Chem., Int. Ed. 1999, 38, 3498. (j) Chen, C.-L.; Goforth, A. M.; Smith, M. D.; Su, C.-Y.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2005, 44, 6673. (k) Kumar, D.; Jose, D. A.; Dastidar, A. Das, P. Inorg. Chem. 2005, 44, 6933. (l) Ma, J. P.; Dong, Y.-B.; Huang, R. Q.; Smith, D. M.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143. (m) Chang, J.-P.; Lin, Y.-Y.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162.
[26](a) Schmidt, G. M. J. Chem. Soc. 1964, 2014. (b) Schmidt, G. M. Pure Appl. Chem. 1971, 27, 647. (c) Wegner, G. Pure Appl. Chem. 1977, 49, 443. (d) Photochemistry in Organized and Constrained Media (Ed.: V. Ramamurthy), VCH, New York, 1991. (e) Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433.
[27](a) Theocharis, C. R.; Jones, W. in Organic Solid State Chemistry (Ed.: G. R. Desiraju), Elsevier, 1987, chap. 2, pp. 47. (b) Wagner, P.; Park B.-S. in Organic Photochemistry, Vol. 11 (Ed.:A. Padwa), Dekker, New York, 1991, chap. 4 (c) Jones, W. Organic Molecular Solids: Properties and Applications, CRCPress, Boca Raton, FL, 1997 (d) Organic Solid State Reactions (Ed.: F. Toda), Top. Curr. Chem. Vol. 254, 2005. (e) Keating, A. E.; Garcia-Garibay M. A. in Organic and Inorganic Photochemistry (Eds.: V. Ramamurthy, K. S. Schanze), Dekker, NewYork, 1998, pp. 195. (f) Braga, D.; Grepioni, F. Angew. Chem., Int. Ed. 2004, 43, 4002. (g) Matsumoto, A. Top. Curr. Chem. 2005, 254, 263. (h) Dilling, W. L. Chem. Rev. 1983, 83, 3. (i) Maekawa, Y.; Kato, S.; Saigo, K.; Hasegawa, M. Macromolecules 1991, 24, 2314. (j) Caronna, T.; Liantonia, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2004, 126, 4500.
[28](a) MacGillivray, L. R.; Papaefstathiou, G. S.; Friščič, T.; Varshney, D.B.; Hamilton, T. D. Top. Curr. Chem. 2005, 248, 201. (b) Varshney, D.B.; Gao, X.; Friščič, T.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2006, 45, 646. (c) Atkinson, M. B. J.; Bučar, D.-K.; Sokolov, A. N.; Friščič, T.; Robinson, C. N.; Bilal, M. Y.; Sinada, N. G.; Chevannes, A.; MacGillivray, L. R. Chem. Commun. 2008, 44, 5713. (d) Papaefstathiou, G. S.; Zhong, Z.; Geng L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158. (e) Peedikakkal, A. M. P.; Koh, L. L.; Vittal, J. J. Chem. Commun. 2008, 4, 441. (f) Nagarathinam, M.; Vittal, J. J. Chem. Commun. 2008, 4, 438. (g) Lee, J. Y.; Hong, S. J.; Kim, C.; Kim, Y. J. Chem. Soc., Dalton Trans. 2005, 23, 3716. (h) Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.; Schrőder, M. Chem. Commun. 1997, 17, 1675.
[29](a) Chu, Q.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2005, 44, 3569. (b) Papaefstathiou, G. S.; Georgia, I. G.; Friščič, T.; MacGillivray, L.R. Chem. Commun. 2005, 31, 3974. (c) Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. (d) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337. (e) Papaefsthathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R. J. Am.Chem. Soc. 2004, 126, 9158. (f) Theocharis, C. R.; Clark, A. M.; Hopkin, S. E.; Jones, P. Mol. Cryst. Liq. Cryst. 1988, 156(Pt.A), 85. (g) Friščič, T.; MacGillivray, L. R. Chem. Commun. 2005, 46, 5748.
[30]Tadokoro, M.; Nakasuji, K. Coord. Chem. Rev. 2000, 198, 205.
[31](a) 李光華, 化學(Chemistry, The Chinese Chem. Soc. Taiwan China) 1994, 52, 405. (b) Fajita, M.; Kwon, Y. J.; Washizu S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (c) West, A. R. Solid State Chemistry and it’s Applications. John Wiley & Son Ltd. Singapore, 1984. (d) Raberau, A. Angew. Chem., Int. Ed. 1985, 24, 1026.
[32]Xiao, J.-C.; Shreeve, J. M. J. Org. Chem. 2005, 70, 3072.
[33]Yin, J.; Elsenbaumer, R. L. J. Org. Chem. 2005, 70, 9436.
[34]曾宜秀 國立台灣師範大學化學系研究所碩士論文 2008.
[35](a) Dinolfo, P. H.; Benkstein, K. D.; Stern, C. L.; Hupp J. T. Inorg. Chem. 2005, 44, 8707. (b) Dinolfo, P. H.; Williams, M. E.; Stern, C. L.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 12989.
[36]Malarski, Z.; Sobczyk, L. Spectrochem. Acta. 48A, 1992, 519.
[37]Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850.
[38]Patrocínio, A. O.T.; Murakami Iha N. Y. Inorg. Chem. 2008, 47, 10851.
[39](a) PAC, 2007, 79, 293 on page 359. (b) http://en.wikipedia.org/wiki/Isosbestic_point.
[40](a) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070. (b) Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Angew. Chem., Int. Ed. 2000, 39, 2891. (c) Thanasekaran, P.; Wu, J.-Y.; Manimaran, B.; Rajendran, T.; Chang, I-J.; Rajagopal, S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Phys. Chem. A, 2007, 111, 10953. (d) Thanasekaran, P.; Liao, R.-T.; Manimaran, B.; Liu, Y.-H.; Chou, P.-T.; Rajagopal, S.; Lu, K.-L. J. Phys. Chem. A, 2006, 110, 10683. (e) Bhattacharya, D.; Sathiyendiran, M.; Luo, T.-T.; Chang, C.-H.; Cheng, Y.-H.; Lin, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2009, 48, 3731. (f) Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang, I-J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2002, 41, 5323. (g) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070.
[41]Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Wang, G.-L.; Jin, G.-X. Chem. Commun. 2008, 15, 1807.