| 研究生: |
林奇斌 Qi-Bin Lin |
|---|---|
| 論文名稱: |
文本情緒的報酬可預測性: 以中國股市爲例 The Return Predictability of Text-based Sentiment: Evidence from China |
| 指導教授: |
周賓凰
Pin-Huang Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 投資者情緒 、文本探勘 、XgBoost模型 、報酬預測 |
| 外文關鍵詞: | investor sentiment, text-mining, XgBoost model, return predictability |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以2019年6月至2019年12月中國大陸上證A股市場上市公司為樣本,爬取東方財富網站旗下論壇「股吧」個人用戶發帖內容,利用XGBoost模型對文本情緒進行提取並構建投資者情緒指標,探討投資者情緒對於大陸個股股票報酬之影響。實證結果發現情緒指標能夠預測下一期股票報酬,隨後股票報酬發生反轉;對於小市值公司而言,投資者情緒對下一期個股股票報酬有較强的影響,但隨後的反轉更加强烈;投資者偏好在股票交易時段進行發貼,且該時段帖子字數普遍較短,非交易時段情緒指標對於股票報酬有更强的預測能力,反轉較小。
This paper takes the Shanghai A-share stock as sample, uses python to crawl data from the post content of individual users of the forum "Guba" of eastmoney website, and uses the XGBoost model to extract the sentiment of the text to construct investor sentiment indicators. This study explores how investor sentiment affects the individual stock returns in China. The results show that investor sentiment can predict the next period individual stock return, yet then the stock return exhibits reversal. The return of small stocks are more affected by investor sentiment. Individual investors prefer to send messages during the stock trading hours, and posts during this period are generally short in words. During non-trading hours investor sentiment has stronger predictive power for stock returns, with smaller reversals.
1. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of finance, 59(3), 1259-1294.
2. Baker, M., & Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of Financial Markets, 7(3), 271-299.
3. Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The journal of Finance, 61(4), 1645-1680.
4. Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of economic perspectives, 21(2), 129-152.
5. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8.
6. Berger, D., & Turtle, H. J. (2012). Cross-sectional performance and investor sentiment in a multiple risk factor model. Journal of Banking & Finance, 36(4), 1107-1121.
7. Bian, S., Jia, D., Li, F., & Yan, Z. (2019). A New Chinese Financial Sentiment Dictionary for Textual Analysis in Accounting and Finance. Available at SSRN 3446388.
8. Brown, G. W., & Cliff, M. T. (2004). Investor sentiment and the near-term stock market. Journal of empirical finance, 11(1), 1-27.
9. De Long, J. B., A. Shleifer, L. Summers and R. J. Waldmann (1990), "Positive feedback investment strategies and destabilizing rational speculation," Journal of Finance, Vol. 45, 375-395.
10. Das, S. R., & Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management science, 53(9), 1375-1388.
11. Das, Sanjiv R., and Mike Y. Chen. "Yahoo! for Amazon: Sentiment extraction from small talk on the web." Management science 53.9 (2007): 1375-1388.
12. Fong, W. M., & Toh, B. (2014). Investor sentiment and the MAX effect. Journal of Banking & Finance, 46, 190-201.
13. Kahneman, D. and A. Tversky (1979), "Prospect theory: An analysis of decision under risk," Econometrica, Vol. 47, 263-291.
14. Kumar, A., & Lee, C. M. (2006). Retail investor sentiment and return comovements. The Journal of Finance, 61(5), 2451-2486.
15. Lee, C. M., Shleifer, A., & Thaler, R. H. (1991). Investor sentiment and the closed‐end fund puzzle. The journal of finance, 46(1), 75-109.
16. Lee, W. Y., Jiang, C. X., & Indro, D. C. (2002). Stock market volatility, excess returns, and the role of investor sentiment. Journal of banking & Finance, 26(12), 2277-2299.
17. Leitch, D., & Sherif, M. (2017). Twitter mood, CEO succession announcements and stock returns. Journal of computational science, 21, 1-10.
18. Ritter, J. R. (1991). The long‐run performance of initial public offerings. The journal of finance, 46(1), 3-27.
19. Shlefier A. and Summers L.(1990) The noise trader approach to finance. Journal of Economic Perspectives 4(2):19-33.
20. Shiller, R. J. (2000). Measuring bubble expectations and investor confidence. The Journal of Psychology and Financial Markets, 1(1), 49-60.
21. Schmeling, M. (2009). Investor sentiment and stock returns: Some international evidence. Journal of empirical finance, 16(3), 394-408.
22. Sabherwal, Sanjiv, Salil K. Sarkar, and Ying Zhang (2011):. "Do internet stock message boards influence trading? Evidence from heavily discussed stocks with no fundamental news." Journal of Business Finance & Accounting 38.9‐10 (2011): 1209-1237.
23. Shaw, H., Ellis, D. A., Kendrick, L. R., Ziegler, F., & Wiseman, R. (2016). Predicting smartphone operating system from personality and individual differences. Cyberpsychology, Behavior, and Social Networking, 19(12), 727-732.
24. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of finance, 62(3), 1139-1168.
25. 李心丹, 王冀甯, & 傅浩. (2002). 中國個體證券投資者交易行為的實證研究. 經濟研究, 11(54), 3.
26. 張丹, & 廖士光. (2009). 中國證券市場投資者情緒研究. 證券市場導報, 2009(10), 61-68.