| 研究生: |
曹顥繽 Hao-Pin Tsao |
|---|---|
| 論文名稱: |
以系統機制分析與解決印刷廠廢氣焚化系統問題之研究 A study on the analysis and resolution of problems in the printing house exhaust gas incineration system using a system mechanism |
| 指導教授: | 廖述良 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 系統機制分析 、凹版印刷 、蓄熱式焚化爐 、觸媒式焚化爐 、風管 、THC 、總熱值 、處理效率 、能源消耗 |
| 外文關鍵詞: | System mechanism analysis, rotogravure printing, regenerative thermal oxidizer (RTO), regenerative catalytic oxidizer (RCO), ductwork, total hydrocarbon concentration (THC), total heat value, treatment efficiency, energy consumption |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凹版印刷作業程序及塑膠品塗裝程序於固定污染源管制之下,所產生的揮發性有機廢氣大多以最佳可行控制技術的熱焚化技術處理,其中包含RCO及RTO的應用。廢氣焚化爐在建置階段的評估製程廢氣來源至關重要,包括高濃度廢氣導致過溫跳機的強排廢氣的空污問題,以及低濃度廢氣造成過度消耗天然氣成本增加情況。本研究以系統機制分析方法,針對該印刷廠的製程污染源與廢氣焚化系統的運作機制進行全面探討,從系統、子系統及元件層進行問題發生原因的分析,並透過對污染源投入物料的成份特性、焚化爐建置階段數據及實際運作數據的收集與分析,釐清廢氣濃度及熱值與焚化爐設計條件不符的根原因,如該印刷廠各製程污染源操作時數及物料成份等數據收集,以及焚化爐建置前操作條件及實際操作的數據收集,分析出廢氣條件並不符合焚化爐操作條件。透過污染源端的運作數據、物料用量及成份分析,計算廢氣的質量流率、THC及熱值,判斷原RCO製程污染源#A、#B廢氣條件與兩套焚化爐符合性,透過風管連接及增設比例是風門方法,使高濃度製程廢氣導入至RTO進行製程變更,改善RCO處理效率且符合環保法規、RTO降低天然氣消耗減少環保治理成本。本研究RCO製程廢氣THC設計值2000.00PPM,改善前為73次、改善後則未發生,燃燒溫度大於設計值520℃,改善前為34次、改善後則未發生,削減率低於93%,改善前148次,改善後共13次。RTO改善前製程廢氣總熱值為525277.61Kcal/hr,改善後為739166.41Kcal/hr,改善前、後天然氣費用每月減少136994.46元。
Rotogravure printing and plastic coating processes, regulated under stationary source pollution control, often treat volatile organic waste gases (VOCs) using optimal available control technologies, including thermal incineration techniques such as RCO (Regenerative Catalytic Oxidizer) and RTO (Regenerative Thermal Oxidizer). During the construction phase of waste gas incinerators, it is crucial to assess the sources of process waste gases. High-concentration waste gases can cause overheating and system shutdowns, resulting in forced exhaust emissions and air pollution issues, while low-concentration waste gases may lead to excessive natural gas consumption and increased operational costs.
This study employs a systemic mechanism analysis approach to comprehensively investigate the operation mechanisms of the process pollution sources and waste gas incineration systems at the printing plant. Analysis is conducted at the system, subsystem, and component levels to identify root causes of issues. By collecting and analyzing data on material composition characteristics of process pollution sources, design-stage parameters of the incinerator, and actual operational data, this study identifies discrepancies between waste gas concentrations, heat values, and incinerator design conditions. Data collected includes operational hours and material compositions of each process pollution source, as well as pre-construction operational conditions and actual operation data of the incinerator.
Using operational data, material usage, and composition analysis at the process pollution source, the mass flow rate, total hydrocarbon concentration (THC), and heat value of waste gases are calculated to evaluate the compatibility of exhaust gas conditions from RCO process pollution sources #A and #B with the two incinerators. Process changes are implemented by connecting ductwork and installing proportional dampers to direct high-concentration waste gases to the RTO system, improving RCO treatment efficiency and compliance with environmental regulations. This change also reduces natural gas consumption in the RTO system, lowering environmental treatment costs.
The RCO system's design THC value is 2000 ppm. Before improvements, there were 73 exceedances, whereas none occurred post-improvement. The combustion temperature exceeded the design value of 520°C in 34 instances prior to improvement, with none afterward. The removal efficiency fell below 93% in 148 cases before improvements, reduced to 13 after improvements. The total heat value of RTO process waste gases increased from 525,277.61 Kcal/hr to 739,166.41 Kcal/hr after the improvements. Monthly natural gas expenses were reduced by NT$136,994.46.
[1] Yaws, C. McGraw-Hill, Chemical properties handbook, Lamar University, Beaumont, 1999.
[2] 經濟部工業局,「輔導產業低污染排放技術計畫,111年度產業因揮發性有機物管制低污染排放策略建議報告(以凹版印刷製程為例)」,民國111年。
[3] 葉雯琪、沈克鵬、楊炎勝、黃莘懿,「研析凹版印刷業揮發性有機物之管制策略」,2022年。
[4] 蔣少勇,「以蓄熱式焚化爐(RTO)處理銅箔基板業排氣中VOCs之效率探討」,國立中央大學,碩士論文,民國98年。
[5] 呂權訓,「以緩衝模組提升兩塔型RTO處理效率之可行性探討」,國立中央大學,碩士論文,民國109年。
[6] 周明顯,「光電半導體VOCs 處理成本分析及效益評估」,國立中山大學, 2003年。
[7] 劉彥含,「以蓄熱式觸媒焚化爐處理排氣中揮發性有機物之操作特性研究」,碩士論文,國立中山大學,民國96年。
[8] 李旻珊,「各類固定污染源VOCs排放特徵與貢獻量分析研究」,朝陽科技大學,碩士論文,民國105年。
[9] 陳律言,「表面塗裝業集氣設施宣導說明」,新竹縣政府環境保護局,民國113年。
[10] 廖述良,「環境系統分析」,國立中央大學,環工所課程講義,2016。
[11] 廖述良,「系統思維的背景」,國立中央大學,環工所課程講義,2018。
[12] 廖述良,「系統思維的概念」,國立中央大學,環工所課程講義,2018。
[13] 廖述良,「系統思維的原則」,國立中央大學,環工所課程講義,2018。
[14] 廖述良,「系統思維與系統分析」,國立中央大學,環工所課程講義,2025。