跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪雅婷
Ya-Ting Hung
論文名稱:
On the Diophantine Equation of (x^m-1)/(x-1)=(y^n-1)/(y-1)
指導教授: 陳燕美
Yen-Mei J. Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 25
外文關鍵詞: Diophantine Equation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們考慮特別的整係數方程式去尋找整數解或有理數解。Ratat和Goormaghtigh觀察出當x,y,m,n為正整數時,(x,y,m,n)=(5,2,3,5)和(90,2,3,13)是方程式 (x^m-1)/(x-1)=(y^n-1)/(y-1) 的解。因此,猜想此方程式只有這兩組解。現在,我們集中焦點在m=3。此時方程式有兩組已知的解。除了那兩組解之外的解就稱為例外解。這篇論文,主要是考慮當n=4時,此方程式沒有例外解。


    We consider special Diophantine equations with integral coefficient and seek
    integral or rational solutions. Ratat[1] and Goormaghtigh [2] observed that
    31=(2^5-1)/(2-1)=(5^3-1)/(5-1)
    and 8191=(2^13-1)/(2-1)=(90^3-1)/(90-1)
    are solutions of the Diophantine equation
    (x^m-1)/(x-1)=(y^n-1)/(y-1)
    ; x > 1; y > 1; n > m > 2.....(1)
    Now, we will focus our attention on the equation
    (x^3-1)/(x-1)=(y^n-1)/(y-1)
    ; n > 2; x > 1; y > 1 with x > y.....(2)
    Equation (2) has two known solutions (x, y, n) = (5, 2, 5), (90, 2, 13). Any other
    solution (x, y, n) of (2) will be called exceptional. In this paper, we show that this
    equation (2) has no exceptional solution when n = 4.

    Contents Abstract ........................................................................................ii Outlines .......................................................................................iii 0 Introduction .................................................................................1 1 The Diophantine Equation (x^3-1)/(x-1)=(y^n-1)/(y-1).........................3 2 The Method of Descent .....................................................................6 3 The Diophantine Equation (x^3-1)/(x-1)=(y^4-1)/(y-1).....................12 References......................................................................................25

    References
    [1] R. Ratat L''intermediaire des Mathematiciens, 23 (1916),150.
    [2] R. Goormaghtigh, L''intermediaire des Mathematiciens, 24 (1917), 88.
    [3] A. Makowski, A. Schinzel, Sur I"equation indet''ermin''ee de R. Goormaghtigh, Mathesis 68 (1959), 128-142.
    [4] A. Makowski, A. Schinzel, Sur I"equation indet''ermin''ee de R. Goormaghtigh, Mathesis 70 (1965), 94-96.
    [5] T. Nagell, The diophantine equation x^2 + 7 = 2^n, Ark. Mat. 4 (1961) 185-187.
    [6] S. Ramanujan, Question 464,J.Indian Math. Soc. 5 (1913), Collected Papers, Cambridge University Press. Cambridge, 1927, p. 327.
    [7] T. N. Shorey, Some exponential diophantine equations, in: Number theory and related topics, Bombay (1989), 217-229.
    [8] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
    [9] M.-H. Le, On the diophantine equation (x^3-1)/(x-1)=(y^n-1)/(y-1),Trans. Amer. Math. Soc. 351 (1999), 1063-1074.
    [10] G. Bergmann, U ber Eulers Beweis des grossen Fermatschen Satzes fur den Exponenten 3:, Math. Ann., 164(1996), 159-175.
    [11] Maohua Le, Exceptional solutions of the exponential diophantine equation (x^3-1)/(x-1)=(y^n-1)/(y-1), J. reine angew. Math. 543 (2002), 187-192.
    [12] Yu. V. Nesterenko and T. N. Shorey, On an equation of Goormaghtigh, Acta Arith. 83 (1998), 381-389.
    [13] Pingzhi Yuan, On the diophantine equation (x^3-1)/(x-1)=(y^n-1)/(y-1), Journal of Number Theory 112 (2005), 20-25.
    [14] Kenneth Ireland, Michael Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag New York Inc., 1982.
    [15] Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer- Verlag New York Inc., 1986.
    [16] L. J. Mordell, Diophantine Equations, Cambridge, England, 1969.25

    QR CODE
    :::