跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃薪源
Hsin-Yuan Huang
論文名稱: 基於受抑式全反射原理之光學式混濁度量測系統
Turbidity Monitoring of Electrical Discharge Machining by Frustrated Total Internal Reflection
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 臨界角受抑式全反射混濁度量測
外文關鍵詞: Critical Angle, Frustrated Total Internal Reflection, Turbidity Measurement
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是開發一種光學式混濁度量測系統。為了使放電加工機台得到更良好的加工品質,因應環境因素的變動,控制器必須能即時調整製程參數。放電加工液體混濁度是放電加工過程中的一項重要參數,藉由監測放電加工油的混濁度,利用量測系統所量測到的混濁度,判斷是否要改變放電加工油的噴流速度,減少積碳與加工屑停留在加工面上,使加工環境保持在最佳加工濃度,藉此提高放電加工(EDM)的加工精度和壽命。


    The purpose of this study is to develop an optical turbidity measured system. The concentration of EDM neutral oil is an important parameter in the EDM. According to measuring the turbidity of EDM neutral oil changing the velocity of jet flow and we can reduce the carbon deposition to stay on the processing surface, so that the processing environment to maintain the best processing concentration. To improve the machining precision and life of EDM.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 朗伯-比爾定律 2 1-2-2 散射定律 3 1-2-3 混濁度概述 4 1-3 研究動機、目的與方法 13 1-4 論文架構 14 第二章 基礎理論 15 2-1 惠更斯原理 15 2-3 反射定律與司乃耳 18 2-4 受抑式全反射原理 19 2-5 阿貝折射計 20 2-6 混濁度與反射率關係之物理模型建立 22 2-7 小結 26 第三章 系統架構 27 3-1 光源系統選擇 27 3-1-1雷射與白光比較 27 3-1-2光源瓦數與靈敏度間的影響 29 3-2 光學元件 32 3-3 訊號擷取與分析系統 32 3-4 抽水幫浦 35 3-5 感測器機構設計 35 3-6 受抑式全反射混濁度量測系統 41 3-7 元件及儀器介紹 43 3-8 小結 45 第四章 實驗結果與討論 46 4-1 可行性實驗及模擬 46 4-2 實驗準備 52 4-2-1 製作受抑式全反射感測器 52 4-2-2 光源系統入射角的設定 53 4-2-3 循環系統組裝 54 4-2-4 整合系統 54 4-3 即時量測實驗 58 4-3-1 階梯式通入放電加工液體量測實驗 58 4-3-2 放電加工即時量測 60 4-3-3 量測穩定度實驗 61 4-3-4 量測解析度 61 4-4 反射率對應濃度 62 4-5 誤差分析 63 4-5-1 臨界角誤差 63 4-5-2 濃度誤差 64 4-6 小結 65 第五章 結論與未來展望 66 5-1 結論 66 5-2 未來展望 66 參考文獻 68

    [1]. 趙凱華、鍾錫華,光學,儒林圖書,台北市,1997年。
    [2]. 安毓英、曾小東,光學感測與量測,五南圖書,台北市,2004年。
    [3]. 鄭大衛(D. K. Cheng)著,電磁波,李永勳和顏仁鴻譯,曉園出版社,台北市,1992年。
    [4]. E. Hecht, OPTICS, 4 edition, Addison Wesley, Boston, 2001.
    [5]. L. Yeqiang, S. Yunbin, S. Zai, S. Yijin and L. Xiaochun, “Measurement and analysis of diesel exhaust particulates based on light scattering,” Journal of Zhejiang University, Vol. 45, NO. 3, pp. 378-384, 2016.
    [6]. K. Bin and L. Shengh, “The dispersive intelligent liquid turbid degree apparatus manufacture,” Journal of Ningxia University:Natural Science, Vol. 20, NO. 4, pp. 332-334, 1999.
    [7]. V. Karthik, S. S. Rao, M. R. Shenoy, Prerana and B. P. Pal, “Determination of optical properties of a turbid medium using fiber optic transmission experiment,” Asian Journal of Chemistry, Vol. 18, NO. 5, pp. 3344-3347, 2006.
    [8]. T. Papaioannou, N. Preyer, Q. Fang, H. Kurt, M. Carnohan, R. Ross, A. Brightwell, G. Cottone, L. Jones and L. Marcu, “Performance evaluation of fiber optic probes for tissue lifetime fluorescence spectroscopy,” Journal of Biomedical Optics, Vol. 4958, pp. 43-50, San Jose, CA, United States, 2003.
    [9]. C. C. Ta and H. S. Min, “A CMOS turbidity to frequency converter with calibration circuits for detecting turbidity applications,” 2015 IEEE International Conference on Mechatronics and Automation, pp. 381-385, Beijing, China, 2015.
    [10]. C. C. Ta, H. S. Min and W. C. Neng, “Development of a Calibrated Transducer CMOS Circuit for Water Turbidity Monitoring,” IEEE Sensors Journal, Vol. 16, NO.11, pp. 4478-4483, 2016.
    [11]. A. Richter, G. Paschew, S. Klatt, J. Lienig and A. K. Friedrich, “Review on Hydrogel-based pH Sensors and Microsensors,” Sensors, Vol. 8, NO. 1, pp. 561-581, 2008.
    [12]. T. Erickson, M. S. Division, I. Honeywell, and I. L. Freeport, “Turbidity sensing as a building block for smart appliances,” IEEE Industry Application Magazine, Vol. 3, NO. 3, pp. 31-36, 1997.
    [13]. P. M. Giro, O. Postolache, J. M. D. Pereira and H. G. Ramos, “Distributed measurement systems and intelligent processing for water quality assessment,” Sensors Transducers Mag, Vol. 38, NO. 12, pp. 74-85, 2003.
    [14]. K. Ebie, D. Yamaguchi, H. Hoshikawa and T. Shirozu, “New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series,” Water Research, Vol. 40, NO. 4, pp. 683-691, 2006.
    [15]. H. Yi, S. Lei, Y. Shuming, C. Hang, J. Kai and P. Jianming, “A highly sensitive in-situ turbidity sensor with low power consumption,” Photonic Sensors, Vol. 4, NO. 1, pp. 77-85, 2014.
    [16]. S. Mylvaganam and T. Jakobsen, “Turbidity sensor for underwater applications — sensor design and system performance with calibration results,” Oceans '98 Conference Proceedings, Vol. 1, NO. 3, pp. 158-161, 1998.
    [17]. V. Kontturi, P. Turunen and J. Uozumi, “Robust sensor for turbidity measurement from light scattering and absorbing liquids,” Optical Letters, Vol. 34, NO. 23, pp. 3743-3745, 2009.
    [18]. A. F. B. Omar and M. Z. B. MatJafri, “Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity,” Sensors, Vol.9, NO.10, pp. 8311-8335, 2009.
    [19]. R. Komiyama, T. Kageyama, M. Miura, H. Miyashita and L. S. Seok, “Turbidity Monitoring of Lake Water by Transmittance Measuresment with a Simple Optical Setup,” 2015 IEEE SENSORS, pp. 1-4, Busan, South Korea, 2015.
    [20]. Y. Liang, L. Zhe and Q. Xin, “A new turbidity measurement method with compensation of transmitted light,” Journal of Beijing University of Chemical Technology, Vol. 40, NO. 3, pp. 89-92, 2013.
    [21]. Y. Jian and T. Z. Su, “Design of on-line underwater scattering turbidimeter,” Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, pp. 535-540, Anchorage, AK, USA, 2002.
    [22]. O. A. Postolache, P. M. B. S. Girao and J. M. D. Pereira, “Multibeam Optical System and Neural Processing for Turbidity Measurement View Document,” IEEE Sensors Journal, Vol. 7, NO. 5, pp. 677-684, 2007.
    [23]. A. Garcia, M. A. Perez and G. J. G. Ortega, “A New Design of Low-Cost Four-Beam Turbidimeter by Using Optical Fibers,” IEEE Transactions on Instrumentation and Measurement, Vol. 56, NO. 3, pp. 907-912, 2007.
    [24]. M. A. P. Garcia, R. M. Vega and C. T. Fernandez, “Full-range, true on-line turbidimeter based upon optical fibers for application in the wine industry,” 2008 IEEE Instrumentation and Measurement Technology Conference, pp.130-134, Victoria, BC, Canada, 2008.
    [25]. K. Kitaoku, M. Takeishi and M. Takeishi, “Development of a Compact, High Precision Turbidimeter,” 2006 SICE-ICASE International Joint Conference, pp.18-21, Busan, South Korea, 2006.
    [26]. H. Zhi, B. Chengfang, Q. Wenfa and L. Zukang, “Online turbidity measurement using light surface scattering,” Automated Optical Inspection for Industry: Theory, Technology, and Applications II, Vol. 3558, pp. 28-30, 1998.
    [27]. G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle,” Measurement Science and Technology, Vol. 6, NO. 2, pp. 214-221, 1995.
    [28]. O. Postolache, P. Girao, M. Pereira and H. Ramos, “An IR Turbidity Sensor: Design and Application,” Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Vol. 1, pp. 535-539, Anchorage, AK, USA, USA, 2002.
    [29]. Y. Liang, L. Zhe and Q. Xin, “Design of on-line underwater scattering turbidimeter,” Transducer and Microsystem Technologies, Vol. 26, NO, 12, pp. 72-74, 2007.
    [30]. Prerana, M. R. Shenoy and B. P. Pal, “Design, Analysis, and Realization of a Turbidity Sensor Based on Collection of Scattered Light by a Fiber-Optic Probe,” IEEE Sensors Journal, Vol. 12, NO. 1, pp. 44-50, 2012.
    [31]. 白金緯, 張德源, 劉暢, 「濁度儀中兩種不同光源對濁度測量的影響研究」, 光學儀器, Vol. 30, NO. 2, pp. 1-3, 2008.

    QR CODE
    :::