跳到主要內容

簡易檢索 / 詳目顯示

研究生: 龔大勝
Da-Sheng Kung
論文名稱: SL(4,R)理論下的漸近平直對稱轉換
Asymptotic Flatness Preserving Transformations in SL(4,R) sigma-model
指導教授: 陳江梅
Chiang-Mei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 漸近平直SL(4R)模型五維黑洞
外文關鍵詞: asymptotic flat, SL(4, R) sigma-model, five dimensional black hole, black ring
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮一個具有SL(4,R)對稱性的五維理論,其中包含重力場、一個純量場及一個三階向量場,我們提出保持時空漸近平直的對稱轉換所必須滿足的條件,統整出在不同座標描述的平直時空中,滿足該條件的所有轉換。這篇論文主要針對以下三種不同時空結構做討論:Kaluza-Klein黑洞、五維的黑洞和black ring,我們詳細列出所有滿足漸近平直條件的對稱轉換,並且討論這些轉換所代表的物理意義,其中部分轉換可以給出帶有電荷的解。


    We give a systematic method to determine the asymptotic flatness preserving transformations
    in the three-dimensional SL(4,R)/SO(2, 2) sigma-model arising from a
    five-dimensional gravity coupled to a dilaton and a three-form field. The permitted
    transformations depend on the coordinate choices. By focusing on three cases,
    namely the Kaluza-Klein black hole, five-dimensional black hole and black ring, we
    find out all possible asymptotic flatness preserving transformations and apply them
    to generate charge from single rotating vacuum solutions.

    1 Introduction 1 2 SL(4,R) Symmetry 4 2.1 Sigma-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Basic symmetry transformations . . . . . . . . . . . . . . . . . . . . . 7 2.3 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Asymptotic Flatness Preserving 13 3.1 AFP condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Kaluza-Klein vacuum R3,1 × S1 . . . . . . . . . . . . . . . . . . . . . 15 3.3 5D Minkowski R4,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Ring coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Charged Kaluza-Klein Black Holes 21 4.1 R1 − L1 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 T2 + T3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 S2 + S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5 R3 + L2 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.6 R4 − L4 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Charged 5D Black Holes 26 5.1 S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.1 Physical quantity . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.2 An equivalent approach . . . . . . . . . . . . . . . . . . . . . 29 6 Charged Ring Solutions 31 6.1 Neutral black rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.3 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3.1 Physical quantity . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.3.2 An equivalent approach . . . . . . . . . . . . . . . . . . . . . 37 7 Conclusion 39 7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography 41 A Kaluza-Klein theory 43 B Relations of gauge field components 45 C Black Rings 46 C.1 Ring coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 C.2 Neutral black rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 D Target-space potentials 52

    Bibliography
    [1] A. Bouchareb, C. M. Chen, G. Clement, D. V. Gal’tsov, N. G. Scherbluck and
    T. Wolf, “ G2 generating technique for minimal D=5 supergravity and black
    rings, ” hep-th/0708.2361v2.
    [2] C. M. Chen, D. V. Gal’tsov and S. A. Sharakin, “ Inverse dualization and nonlocal
    dualities between Einstein gravity and supergravities, ” Class. Quantum
    Grav. 19 (2002), 347-373.
    [3] C. M. Chen, D. V. Gal’tsov, K. Maeda and S. A. Sharakin, “ SL(4,R) generating
    symmetry in five−dimensional gravity coupled to dilaton and three−form,
    ” Phys. Lett. B453, 7 (1999), hep-th/9901130.
    [4] H. Elvang, “ A charged rotating black ring, ” Phys. Rev. D 68, 124016 (2003).
    [5] R. Emparan and H. S. Reall, “ A rotating black ring in five dimensions, ”
    Phys. Rev. Lett. 88, 101101 (2002), hep-th/0110260.
    [6] R. Emparan and H. S. Reall, “ Black rings, ” Class. Quant. Grav. 23, R169
    (2006), hep-th/0608012.
    [7] R. Emparan, “ Rotating circular strings and infinite non − uniqueness of
    black rings, ” JHEP 03 (2004) 064.
    [8] V. Frolov, A. Zelnikov and U. Bleyer, “ Charged rotating black holes from
    five-dimensional point of view, ” Ann. der Physik (Leipzig) 44 (1987), 371-
    377.
    [9] S. Giusto and A. Saxena, “ Stationary axisymmetric solutions of five
    dimensional gravity, ”hep-th/0705.4484v2.
    [10] J. H. Horne and G. T. Horowitz, “ Rotating dilaton black holes, ” Phys. Rev.
    D46 (1992), 1340-1346, hep-th/9203083.
    [11] W. Israel, Phys. Rev. 164 (1967) 1776. B. Carter, Phys. Rev. Lett. 26 (1971)
    331. D. C. Robinson, Phys. Rev. Lett. 34 (1975) 905.
    [12] R. C. Myers and M. J. Perry, “ Black holes in higher dimensional space−times,
    ” Ann. Phys. 172 (1986) 304.
    [13] A. A. Pomeransky and R. A. Sen’kov, “ Black ring with two angular momenta,
    ” hep-th/0612005.

    QR CODE
    :::