跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戈鈴
Lin Ke
論文名稱: 電遷移誘發銅墊層消耗動力學之研究
Study of Cu dissolution induced by Electromigration
指導教授: 劉正毓
Chenyi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 54
中文關鍵詞: 銅墊層銲料電遷移
外文關鍵詞: electromigration, Sn-Cu, Cu, solders
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    用Sn、Sn0.7Cu、Sn3.0Cu 三種銲料,製作成Cu/Solder/Cu 覆晶式結構,於電流密度104amp/cm2,環境溫度分別為155oC、180oC、與200oC下,進行電遷移效應下誘發銅墊層消耗動力學機制之研究。實驗結果發現陰極端銅墊層消耗是由於電遷移效應下使得銲料中銅原子快速遷移至陽極端,造成接近陰極端介金屬化合物的銲料處,有極低的銅濃度。與陰極端介金屬化合物形成濃度梯度,介金屬化合物因而溶解,誘發陰極端銅墊層消耗。隨著銲料銅濃度的添加,電遷移效應導致銅墊層消耗的現象逐漸減緩。Sn、Sn0.7Cu 與Sn3.0Cu 三種銲料,銅墊層消耗之活化能分別為0.68eV、0.72eV、0.73eV。另外, Cu/Sn/Cu系統失效的臨界溫度被估計出來約為55.3oC。當溫度高於55.3oC 時電遷移效應會造成陰極端銅墊層溶解,低於55.3oC 陰極端則會產生孔洞。


    To study the kinetics of Cu dissolution induced by electromigration,we produce a flip chip structure by connecting two Cu foil with a solder
    bump. Three different Sn-Cu solders are studied which are Sn, Sn0.7Cu,and Sn3.0Cu. The solder bumps are stressed by current density of
    104(amp/cm2) at three elevated temperatures, which are 155 ºC, 180 ºC,and 200ºC.
    The result shows that electromigration will cause the consumption in the cathode Cu pad. It is because that once Cu atoms dissolve into Sn,
    they are transported to the anode interface quickly. Hence, the solubility of Cu in Sn near the interface between IMC and Sn at the cathode side is always maintain unsaturated. We conclude that the dissolution process of Cu into Sn controls the Cu foil consumption.
    The activation energy of EM-induced Cu consumption of three
    solders, Sn, Sn0.7Cu, Sn3.0Cu, is about 0.68eV, 0.72eV,and 0.73eV
    respectively. Adding Cu into Sn solder can reduce electromigration
    effect.
    By the way, a critical temperature that can distinguish two type
    electromigration failure modes is about 55.3oC. At higher the critical
    temperature, Cu dissolution induced by electromigration occur the
    cathode side; at lower critical temperature, voids will form at the cathode
    side

    目錄頁數 中文摘要......................................................................I 英文摘要.....................................................................II 誌謝........................................................................III 目錄.........................................................................IV 圖目錄.......................................................................VI 表目錄.......................................................................IX 第壹章、導論..................................................................1 第貳章、文獻回顧..............................................................4 2.1 電遷移原理................................................................4 2.1.1 電遷移理論方程式........................................................4 2.1.2 平均失效時間(MTTF) .....................................................5 2.2 合金電遷移效應............................................................6 2.3 失效模式..................................................................8 2.3.1 第一類失效模式..........................................................8 2.3.2第二類失效模式...........................................................9 第參章、實驗方法.............................................................10 3.1 試片的製備...............................................................10 3.1.1 通電試片製作...........................................................10 3.1.2 熱處理試片製作.........................................................12 3.2 金相分析.................................................................12 3.2.1背向式電子顯微鏡(BSE)觀察...............................................12 3.2.2 聚焦離子束(FIB)觀察....................................................12 3.2.3 電子探測分析儀(EPMA)分析...............................................13 第肆章、結果與討論...........................................................14 4.1 純錫銲料之電遷移模式.....................................................14 4.1.1固態熱處理之界面反應及銅墊層消耗動力學行為..............................14 4.1.2銅墊層之電遷移應........................................................19 4.2 添加銅之影響.............................................................30 4.2.1 不同銲料之活化能.......................................................30 4.2.2 添加銅之電遷移效應.....................................................39 4.3 失效之臨界溫度...........................................................44 附錄A 錫-3.5銀-10銦之電遷移效應..............................................48 第伍章、結論.................................................................51 參考文獻.....................................................................52

    參考文獻
    1. Edelstein D, Heidenriech J, Goldblatt R, Cote W, Uzoh C, et al. IEEE
    Int Electron Dev. Meet, pp. 773 (1997)
    2. P. J. Clarke, A. K. Ray, and C. A. Hogarth, International Journal of
    Electronics, 69, pp. 333-338, (1990).
    3. J. Tao, N. W. Cheung, and C. Hu, IEEE Electron Device Letters, 14,
    pp.554-556, (1993)
    4. M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki, Journal of
    Vacuum Science & Technology B, 12, pp. 2992-2996, (1994)
    5. L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet,
    Microelectron. Reliab. 40, pp.77 (2000)
    6. T. Kwok, Mater. Chem. and Phys., 33, pp. 176-188, (1993)
    7. C-K. Hu, K. Y. Lee, L. Gignac, and R. Carruthers, Thin Solid Films
    308–309, 443 (1997)
    8. Blech IA, Sello H. Phys Failures Elect, 5, pp.496 (1967)
    9. E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, IBM J.
    Res. Develop, 8, pp. 102, (1964)
    10. P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J.
    Sheaffer, in “Electronics Packaging Handbook,” edited by R.R.
    Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, (Chapman &
    Hall, M. A., 1999) p. 2-129.
    11. 1999 International Roadmap for semiconductor Technology,
    Semiconductor Industry Association, San Jose, CA.
    12. Christine S. Hav-Riege, Microelectronics Reliab. 44 pp.196 (2004)
    13. W. J. Plumbridge, J. Mater. Science, 31 pp. 2501~2504 (1996)
    14. L. H. Su, Y. W. yen, C. C. Lin, and S. W. Chen, Metal. Mater. Trans. B,
    28, pp. 927~934 (1997)
    15. M. Abtew, and G. Selvdury, Mater. Science and Engineering, 27
    pp.95~141 (2000)
    16. 陳志銘、陳信文,”銲料與界面反應”,材料會訊, 6,pp. 74~80 (1999)
    17. H. Y. Chang, S. W. Chen, D. S. Wong, and H. F. Hsu, submitted to J.
    Mater. Research for reviewing for publication (2003)
    18. J. Y. Park, J. S. Ha, C. S. Kang, K. S. Shin, M. I. Kim, and J.P. Jung, J.
    Mater. 29, pp. 1145~1152 (2000)
    19. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL, pp.
    663 (1996)
    20. K. N. Tu, Phys. Rev. B 45, 1409 (1992)
    21. C. K. Hu and H. B. Huntington, Physical Review B, 26, pp.
    2782-2789,(1982)
    22. P. F. Tang, John Wiley&Sons, N. Y., 64 (1993)
    23. Ames I, d’Heurle FM, Horstmann RE. IBM J Res Develop pp.14~41
    24. C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., 88, November,
    pp.5703 (2000)
    25. S. Brandenbery and S. Yeh, in Proceedings of the Surface Mount
    International Conference and Exposition, SMI 98, San Jose, CA August
    (1998) pp. 337-344
    26. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, pp.
    58 (1999)
    27. Y. H. Lin, Y. C. Hu, Johnson Tsai, and C. Robert Kao, Int’l Symposium
    on electronic Materials and Packaging pp.253~258(2002)
    28. M. Onishi and H. Fujibuchi, Trans. JIM 16, pp. 539(1975)
    29. http:// www.solderword.com/
    30. T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001)
    31. S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron Mater. 27, pp.
    1193-1197
    32. Prabjit Singh and Milton Ohring, J. Appl. Phys. 56, pp. 899-907 Mater.
    27, pp. 1193-1197

    QR CODE
    :::