| 研究生: |
Munusamy Tamilselvi Tamilselvi Munusamy |
|---|---|
| 論文名稱: |
使用有限元素分析以設計最佳化的生醫感測用之指叉電極 Design of Optimum Interdigitated Electrode for Biosensing through Finite Element Simulation |
| 指導教授: |
Tsai Jangzern
Jang-Zern Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 叉指电极 、COMSOL 多物理学 、生物传感器 、优化设计 |
| 外文關鍵詞: | Interdigitated electrode, COMSOL Multiphysics, Biosensor, Optimum design |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個研究中,我們提出了一種作為阻抗生物感測器的指叉電極(IDE)的最佳結構。以COMSOL Multiphysics的有限元素分析模擬軟體來計算調整電極的形狀(半圓、弧形和矩形電極) 和電極的幾何參數(電極之間的間距、手指的長度和寬度,以及手指的數量) 對感測器的影響,以增進感測器的靈敏度。模擬的結果指出在同樣的操作電壓和頻率下, 相較於弧形和半圓電極,矩形電極提供較多集中的、較大的電場強度和較大的阻抗大小。 根據電極的幾何參數,較小的電極可以產生較高與較多集中的電場強度。具有18支手指,手指間距為0.1毫米,手指寬度為0.1毫米,手指長度為3毫米,電極厚度為0.05毫米的IDE是最佳的設計,可產生最高的電場強度。優化的電極強度為900.61 V / m,電極的電容為1.38 pF。
在電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS)分析中, 包含在相同的操作電壓與頻率下,不同形狀的電極,含/不含蛋白質的PBS溶液的培養基。針對不同形狀繪制針對阻抗和相角的PBS穩態圖。可以看出,隨頻率的增加,阻抗值減小,相位角沿負方向增加。根據模擬結果,矩形電極的阻抗和相位高於含/不含蛋白質的弧形邊緣電極和半圓電極。與弧形邊緣和半圓電極相比,矩形在電極的表面上也具有較強的電場。較強的電場會導致較大的阻抗。因此,矩形電極具有更好的靈敏度。
In this study, we present a preliminary investigation of optimum structures of an interdigitated electrode (IDEs) as impedance biosensors. The COMSOL Multiphysics finite element simulation software was conducted to investigate the shape of electrode (semi-circular, curvy-edged and rectangular electrode) and the effect of varying the geometrical parameters of the electrodes (spacing between the electrodes, finger width and length, and number of fingers) on the sensor performance to improve the sensitivity of the sensor. The simulation result indicates that the rectangular electrode provides more concentric, higher electric field strength and higher impedance magnitude compared with the curvy-edged and semi-circular electrode at the samoperatingal voltage and frequency. Based on the electrode geometry parameters, a higher and more concentric electric field strength will be generated with smaller electrodes. The IDE with 18 fingers, 0.1 mm in finger spacing and 0.1 mm in finger width, 3 mm in finger length and 0.05 mm in electrode thickness is the optimum design, which generates the highest electric field strength. The optimized electrode electric field strength is 900.61 V/m and the capacitance of the electrode is 1.38 pF.
In EIS analysis includes, different shapes of electrode with and without protein in the medium of PBS solution at the same operating voltage and frequency. The PBS stabilization graph for impedance and phase angle plotted against different shapes. It is observed that with increase of frequency the impedance value decreases and the phase angle increases in negative direction. Based on the simulation result, the rectangular electrode impedance and phase is higher than the curved edge electrode and semi-circular electrode with and without protein. The rectangular also have strong electric field on the surface of the electrode compared to the curvy edged and semi-circular electrodes. The stronger electric fields cause greater impedance magnitude. Therefore, the rectangular electrodes have better sensitivity.
[1] S. Zhang, J. Ding, Y. Liu, J. Kong, O. Hofstetter, Development of a highly enantioselective capacitive immunosensor for the detection of α-amino acids, Analytical chemistry, 78 (2006) 7592-7596.
[2] E. Ghafar-Zadeh, Wireless integrated biosensors for point-of-care diagnostic applications, Sensors, 15 (2015) 3236-3261.
[3] A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers, Proceedings of the IEEE, 92 (2004) 808-845.
[4] R. Igreja, C. Dias, Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness, Sensors Actuators B: Chemical, 115 (2006) 69-78.
[5] M. Varshney, Y. Li, Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells, Biosensors bioelectronics, 24 (2009) 2951-2960.
[6] F. Bettazzi, G. Marrazza, M. Minunni, I. Palchetti, S. Scarano, Biosensors and related bioanalytical tools, Comprehensive Analytical Chemistry, 77 (2017) 1-33.
[7] S. Shukla, P. Govender, A. Tiwari, Polymeric Micellar Structures for Biosensor Technology, Advances in Biomembranes and Lipid Self-Assembly, Elsevier2016, pp. 143-161.
[8] N. Yi, M. Abidian, Conducting polymers and their biomedical applications, Biosynthetic Polymers for Medical Applications, Elsevier2016, pp. 243-276.
[9] A. Koyun, E. Ahlatcıoğlu, Y.K. İpek, Biosensors and their principles, A Roadmap of Biomedical Engineers and Milestones, IntechOpen2012.
[10] N. Mungroo, S. Neethirajan, Biosensors for the detection of antibiotics in poultry industry—a review, Biosensors, 4 (2014) 472-493.
[11] A.-C. Huet, P. Delahaut, T. Fodey, S.A. Haughey, C. Elliott, S. Weigel, Advances in biosensor-based analysis for antimicrobial residues in foods, TrAC Trends in Analytical Chemistry, 29 (2010) 1281-1294.
[12] A. Heller, Amperometric biosensors, Current opinion in biotechnology, (1996) 50-54.
[13] A.L. Ghindilis, P. Atanasov, M. Wilkins, E. Wilkins, Immunosensors: Electrochemical sensing and other engineering approaches, Biosensors & Bioelectronics, 13 (1998) 113-131.
[14] A.N. Santos, Aspectos bioeletroquímicos de dendrímeros como nanoplataformas para aplicações clínicas, (2008).
[15] A. Kueng, C. Kranz, B. Mizaikoff, Amperometric ATP biosensor based on polymer entrapped enzymes, Biosensors Bioelectronics, 19 (2004) 1301-1307.
[16] R. Monošík, Miroslav Streďanský, and Ernest Šturdík, Biosensors-classification, characterization and new trends, Acta Chimica Slovaca (2012) 109-120.
[17] A.M. Pisoschi, Potentiometric biosensors: concept and analytical applications-an editorial, Biochem Anal Biochem (2016) 19-20.
[18] M.H. Ho, Potentiometric biosensor based on immobilized enzyme membrane and fluoride detection, Sensors and Actuators, 15 (1988) 445-450.
[19] P. D'Orazio, Biosensors in clinical chemistry, Clinica Chimica Acta, 334 (2003) 41-69.
[20] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: Recommended definitions and classification, Analytical Letters, 34 (2001) 635-659.
[21] M. Pohanka, P. Skladai, Electrochemical biosensors - principles and applications, Journal of Applied Biomedicine, 6 (2008) 57-64.
[22] R. Naravaneni, K. Jamil, Rapid detection of food-borne pathogens by using molecular techniques, Journal of Medical Microbiology, 54 (2005) 51-54.
[23] P.T. Kissinger, and William R. Heineman, Cyclic voltammetry, Journal of Chemical Education, (1983) 702.
[24] C.V. Vidal, and A. Igual Muñoz, Influence of protein adsorption on corrosion of biomedical alloys., Bio-Tribocorrosion in Biomaterials and Medical Implants, (2013) 187-219.
[25] D. Grieshaber, Electrochemical biosensors-sensor principles and architectures, Sensors (2008) 1400-1458.
[26] T. Chen, N. Bowler, Design of interdigital spiral and concentric capacitive sensors for materials evaluation, AIP Conference Proceedings, AIP, 2013, pp. 1593-1600.
[27] U. Hashim, A. Puah, C. Voon, M.M. Arshad, W.-W. Liu, S. Kahar, A. Huda, H.C. Lee, Low cost mask layout design for fabrication of spiral interdigitated electrodes in electrochemical biosensor application, 2015 2nd International Conference on Biomedical Engineering (ICoBE), IEEE, 2015, pp. 1-5.
[28] A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo-Acemel, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Printed electrodes structures as capacitive humidity sensors: A comparison, Sensors Actuators A: Physical, 244 (2016) 56-65.
[29] L. Ribeiro, F. Fruett, Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors, Proceedings of the Sensor Devices, Venice, Italy, (2015) 179-182.
[30] A.F.M. Mansor, S.N. Ibrahim, Simulation of ring interdigitated electrode for dielectrophoretic trapping, 2016 IEEE International Conference on Semiconductor Electronics (ICSE), IEEE, 2016, pp. 169-172.
[31] J. Guo, T. Bamber, M. Chamberlain, L. Justham, M. Jackson, Optimization and experimental verification of coplanar interdigital electroadhesives, Journal of Physics D: Applied Physics, 49 (2016) 415304.
[32] M. Xu, R. Wang, Y. Li, Rapid detection of Escherichia coli O157: H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation, Talanta, 148 (2016) 200-208.
[33] R. Wang, J. Lum, Z. Callaway, J. Lin, W. Bottje, Y. Li, A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157: H7, Biosensors, 5 (2015) 791-803.
[34] D. Wang, Q. Chen, H. Huo, S. Bai, G. Cai, W. Lai, J. Lin, Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles, Food control, 73 (2017) 555-561.
[35] V. Escamilla-Gómez, S. Campuzano, M. Pedrero, J.M.J.B. Pingarrón, bioelectronics, Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation, Biosensors and Bioelectronics, 24 (2009) 3365-3371.
[36] W.O. Ho, S. Krause, C.J. McNeil, J.A. Pritchard, R.D. Armstrong, D. Athey, K. Rawson, Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation, Analytical Chemistry, 71 (1999) 1940-1946.
[37] K. Settu, J.-T. Liu, C.-J. Chen, J.-Z. Tsai, Development of carbon− graphene-based aptamer biosensor for EN2 protein detection, Analytical biochemistry, 534 (2017) 99-107.
[38] S.G. Dastider, S. Barizuddin, M. Dweik, M.F. Almasri, Impedance biosensor based on interdigitated electrode array for detection of E. coli O157: H7 in food products, Sensing for Agriculture and Food Quality and Safety IV, International Society for Optics and Photonics, 2012, pp. 83690Q.
[39] S.M. Radke, E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection, IEEE sensors journal, 4 (2004) 434-440.
[40] I. Tubia, J. Paredes, E. Pérez-Lorenzo, S.J.S. Arana, A.A. Physical, Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis, Sensors Actuators A: Physical, 269 (2018) 175-181.
[41] A. Muaz, U. Hashim, W.-W. Liu, F. Ibrahim, K. Thong, M.S. Mohktar, Fabrication of interdigitated electrodes (IDE's) by conventional photolithography technique for pH measurement using micro-gap structure, Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, IEEE, 2014, pp. 146-150.
[42] M. Mejri, H. Baccar, E. Baldrich, F.J. Del Campo, S. Helali, T. Ktari, A. Simonian, M. Aouni, A.J.B. Abdelghani, Bioelectronics, Impedance biosensing using phages for bacteria detection: Generation of dual signals as the clue for in-chip assay confirmation, Biosensors Bioelectronics, 26 (2010) 1261-1267.
[43] A. Quershi, Y. Gurbuz, W.P. Kang, J.L. Davidson, A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker, Biosensors Bioelectronics, 25 (2009) 877-882.
[44] A. Qureshi, Y. Gurbuz, J.H. Niazi, Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum, Sensors Actuators B: Chemical, 220 (2015) 1145-1151.
[45] Q.N. Minh, A. Kuijk, S.P. Pujari, F. van de Bent, J. Baggerman, H.D. Tong, H. Zuilhof, C.J. van Rijn, Preparation and gas sensing properties of nanocomposite polymers on micro-Interdigitated electrodes for detection of volatile organic compounds at room temperature, Sensors Actuators B: Chemical, 252 (2017) 1098-1104.
[46] S.K. Arya, P. Zhurauski, P. Jolly, M.R. Batistuti, M. Mulato, P. Estrela, Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum, Biosens Bioelectron, 102 (2018) 106-112.
[47] C.T. Thanh, N.H. Binh, N. Van Tu, V.T. Thu, M. Bayle, M. Paillet, J.L. Sauvajol, P.B. Thang, T.D. Lam, P.N. Minh, N. Van Chuc, An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl, Sensors and Actuators B: Chemical, 260 (2018) 78-85.
[48] R. Haarindraprasad, U. Hashim, S.C. Gopinath, V. Perumal, W.W. Liu, S.R. Balakrishnan, Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing, Anal. Chim. Acta, 925 (2016) 70-81.
[49] X. Fang, Q. Jin, F. Jing, H. Zhang, F. Zhang, H. Mao, B. Xu, J. Zhao, Integrated biochip for label-free and real-time detection of DNA amplification by contactless impedance measurements based on interdigitated electrodes, Biosens Bioelectron, 44 (2013) 241-247.
[50] P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M.O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors Actuators B: Chemical, 49 (1998) 73-80.
[51] Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, Sensors Actuators A: Physical, 136 (2007) 518-526.
[52] K.V. Singh, A.M. Whited, Y. Ragineni, T.W. Barrett, J. King, R. Solanki, 3D nanogap interdigitated electrode array biosensors, Analytical bioanalytical chemistry, 397 (2010) 1493-1502.
[53] S. MacKay, P. Hermansen, D. Wishart, J. Chen, Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications, Sensors, 15 (2015) 22192-22208.
[54] M. Webster, I. Timoshkin, S. MacGregor, M. Mattey, Computer aided modelling of an interdigitated microelectrode array impedance biosensor for the detection of bacteria, IEEE Transactions on Dielectrics Electrical Insulation, 16 (2009) 1356-1363.
[55] X. Tang, D. Flandre, J.-P. Raskin, Y. Nizet, L. Moreno-Hagelsieb, R. Pampin, L.A.J.S. Francis, A.B. Chemical, A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection, Sensors Actuators B: Chemical, 156 (2011) 578-587.
[56] N. Zoric, A. Iavorschi, M. Sireteanu, G. Viziteu, R. Ciobanu, Design And Simulations Of Idc Sensor Using Comsol Multyphysics And Dielectric Spectroscopy Of Ltcc Spectroscopy Of Ltcc Materials Materials Materials.
[57] M. Ibrahim, J. Claudel, D. Kourtiche, M. Nadi, F. Montaigne, G. Lengaigne, Optimization of planar interdigitated electrode array for bioimpedance spectroscopy restriction of the number of electrodes, 2011 Fifth International Conference on Sensing Technology, IEEE, 2011, pp. 612-616.
[58] R. Igreja, C. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure, Sensors Actuators A: Physical, 112 (2004) 291-301.
[59] H.J. Pandya, H.T. Kim, R. Roy, W. Chen, L. Cong, H. Zhong, D.J. Foran, J.P. Desai, Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements, Sensors Actuators B: Chemical, 199 (2014) 259-268.
[60] V. Tsouti, C. Boutopoulos, I. Zergioti, S. Chatzandroulis, Capacitive microsystems for biological sensing, Biosensors Bioelectronics, 27 (2011) 1-11.
[61] P. Van Gerwen, W. Laureys, G. Huyberechts, M. De Baeck, K. Baert, J. Suis, A. Varlan, W. Sansen, L. Hermans, R. Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors, Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), IEEE, 1997, pp. 907-910.
[62] W.H. Grover, Interdigitated Array Electrode Sensors: Their Design, Efficiency, and Applications, (1999).
[63] D. X Tang, J. Flandre, Y.N. Raskin, A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection, Sensors and Actuators (2011) 578-587.