跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴仕修
Shih-Hsiu Lai
論文名稱: 亞精胺影響下DNA構形與DNA碎片分佈之研究
Effects of Spermidine on DNA Conformation and the Distributions of DNA Fragmentation
指導教授: 陳志強
Chi-Keung Chan
楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 英文
論文頁數: 83
中文關鍵詞: 複現DNA 構形亞精胺原子力顯微鏡斷碎
外文關鍵詞: AFM, reentrant, DNA conformation, spermidine, fragmentation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究在凝聚物-亞精胺影響下去氧核醣核酸(DNA)之構形變化。由電泳實驗可知,依據不同的亞精胺濃度,DNA 可分為非凝聚態、凝聚態以及複現態。為了比較此三種狀態下DNA 構形之異同,我們使用原子力顯微鏡(AFM)直接觀測DNA 分子。在非凝聚態下,DNA 呈現花狀結構;而複現態下,DNA 呈現樹枝狀結構。
    此外,我們藉由DNA 碎片大小之分佈來預測其原始之結構。DNA 斷碎實驗是由DNA 分子與螢光染劑(YOYO-1)接合及亞精胺之影響下,光解作用使之斷碎,再由電泳分析其碎片大小分佈。經由相互比較有或沒有亞精胺影響之碎片分佈,我們發現a) 在亞精胺的影響下,加速DNA 的斷碎過程,b) 在初期的斷碎過程中,有亞精胺影響之斷碎實驗擁有較長DNA 分子的存在,c) 在複現態下,DNA 碎片分佈形式類似於一Lognormal 分佈。由以上的發現,推測高階結構之DNA 分子影響了其斷碎的過程。


    The conformation of DNA in the presence of condensing agent, spermidine is studied. The non-condensed, condensed, and reentrant states of DNA in different concentrations of spermidine are determined by the gel electrophoresis. The goal of this study is to compare the conformations of DNA in these three states. The atomic force microscope (AFM) is used to probe the DNA directly. The flower-shaped and the branch-like structures of DNA are observed in the non-condensed and the reentrant state, respectively.
    We also estimate the structure of DNA from the distributions of the DNA fragments.The light induced fragmentation of DNA in the presence of fluorescent dye, YOYO-1 and spermidine is analyzed by the gel electrophoresis. By the comparison of the distributions in
    the presence and absence of spermidine, it is found that a) spermidine enhances the fragmentation process, and b) in the presence of spermidine, the existence of the longer DNA fragments is observed during the early fragmentation process, and c) the form of the distribution of DNA fragments in the reentrant state is similar to the Lognormal distribution. These findings suggest that the higher order structures of DNA molecules are involved in the fragmentation process.

    Abstract………………………………………………………………………………………ii Contents………………………………………………………………………………………iv List of figures………………………………………………………………………………vii List of tables…………………………………………………………………………………x 1 Chapter 1 Introduction…………………………………………………………………1 1.1 Conformation of DNA and Its Biological Meaning……………………………………1 1.1.1 Structure of DNA………………………………………………………………3 1.1.2 Introduction to Spermidine………………………………………………………5 1.1.3 Condensation and Reentrant State of DNA ……………………………………7 1.2 Fragmentation Experiments……………………………………………………………8 1.2.1 Fragmentation of DNA by Irradiation…………………………………………9 1.2.2 Fragmentation of DNA Induced by Light………………………………………10 1.2.3 The Form of the Distributions…………………………………………………10 1.3 Overview of This Thesis……………………………………………………………12 2 Chapter2 Materials and Methods……………………………………………………14 2.1 Overview……………………………………………………………………………14 2.2 Introduction to YOYO-1……………………………………………………………14 2.3 DNA Sample Preparation……………………………………………………………16 2.3.1 Samples for Illumination Experiments…………………………………………16 2.3.2 Samples Observed under the AFM……………………………………………17 2.4 Experimental Setups…………………………………………………………………19 2.5 Observation Methods and Procedures………………………………………………21 2.5.1 Gel Electrophoresis……………………………………………………………21 2.5.1.1 Introduction to Gel Electrophoresis……………………………………21 2.5.1.2 Procedure of Gel Electrophoresis……………………………………22 2.5.2 AFM…………………………………………………………………………24 2.5.2.1 Introduction to the AFM……………………………………………24 2.5.2.2 Operation Procedure of the AFM………………………………………28 2.6 Simulation Method……………………………………………………………………29 2.7 Summary and Discussions……………………………………………………………31 3 Chapter 3 Results and Discussions…………………………………………………32 3.1 Overview……………………………………………………………………………32 3.2 Condensation and Reentrant State of DNA in Gel Electrophoresis…………………32 3.3 The Conformation of DNA Observed under the AFM………………………………35 3.3.1 The Conformation of DNA in the Presence of Spermidine……………………35 3.3.2 The Conformation of DNA-YOYO Complex in the Presence of Spermidine……………………………………………………………………44 3.3.3 Summary for the Conformation of the DNA and DNA-YOYO Complex in the Presence of Spermidine………………………………………………………48 3.4 Illumination Experiments Results……………………………………………………49 3.4.1 The Effect of YOYO in the Illumination Experiments…………………………49 3.4.2 The Distributions of Fragmentation of DNA…………………………………50 3.4.3 Total Intensity Problem in the Illumination Experiments………………………52 3.4.4 Discussion of the Fragmentation Distributions…………………………………55 3.4.5 DNA Fragments Observed under the AFM……………………………………61 4 Chapter 4 Conclusions………………………………………………………………64 5 Reference………………………………………………………………………………66 6 Appendix ………………………………………………………………………………70 A. Sample Preparation for Illumination Experiments……………………………………70 B. Sample Preparation Observed under the AFM………………………………………71 C. Gel Preparation ………………………………………………………………………73 D. Gel Electrophoresis……………………………………………………………………74 E. Programs………………………………………………………………………………75

    [1] Leonard C. Gosule, John A. Schellman (1976) Compact form of DNA induced by
    spermidine. Nature, 259, 333-335
    [2] Andrew A. Travers (1989) DNA Conformation and protein binding. Annu. Rev. Biochem,.
    58:427-52
    [3] Francois Luckel, Koji Kubo, Kanta Tsumoto, Kenichi Yoshikawa (2005) Enhancement
    and inhibition of DNA transcriptional activity by spermine: A marked difference between
    linear and circular templates. FEBS letters, 579, 5119-5122
    [4] David L. Nelson, Michael M. Cox Lehninger Principles of Biochemistry. 4ed W. H.
    Freeman and Company Press.
    [5] U. K. Laemmli (1975) Characterization of DNA condensates induced by poly(ethylene
    oxide) and polylysine. Proc. Nat. Acad. Sci. USA, 72, 11, 4288-4292
    [6] Malla Kuosmanen, Hannu Poso (1985) Inhibition of the activity of restriction
    endonucleases by spermidine and spermine. FEBS, 179, 17-20
    [7] http://en.wikipedia.org/wiki/Dna
    [8] http://en.wikipedia.org/wiki/Worm-like_chain
    [9] Claudio Rivetti, Martin Guthold, Carlos Bustamente (1996) Scanning force microscopy of
    DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical
    polymer chain analysis. J. Mol. Biol., 264, 919-932
    [10] Dale Kaiser, Michael Syvanen, Terrie Masuda (1975) DNA packaging steps in
    bacteriophage Lambda head assembly. J. Mol. Biol., 91, 175-186
    [11] Sonia Cunha, Theo Odijk, Erhan Suleymanoglu, Conrad L. Woldringh (2001) Isolation of
    the Escherichia coli nucleoid. Biochimie, 83, 149-154
    [12] T. Thomas, T. J. Thomas (2001) Polyamines in cell growth and cell death: molecular
    mechanisms and therapeutic applications. CMLS, 58, 244-258
    [13] Amin Ahmed Ouameur, Heidar-Ali Tajmir-Riahi (2004) Structural analysis of DNA
    interactions with biogenic polyamines and cobalt(III)hexamine studied by Fourier
    transform infrared and capillary electrophoresis. The journal of Biological Chemistry,
    279, 40, 42041-42054
    [14] http://en.wikipedia.org/wiki/Spermidine
    [15] Isabel Baeza, Patricio Gariglio, Luz Maria Rangel, Pedro Chavez, Lourdes Cervantes,
    Carlos Arguello, Carlos Wong, Cecilia Montaiiez (1987) Electron microscopy and
    biochemical properties of polyamine-compacted DNA. Biochemistry, 26, 6387-6392
    [16] Zhang Lin, Chen Wang, Xizeng Feng, Maozi Liu, Jianwei Li, Chunli Bai (1998) The
    observation of the local ordering characteristics of spermidine condensed DNA: atomic
    force microscopy and polarizing microscopy studies. Nucleic acids research, 26, 13,
    3228-3234
    [17] Ye Fang, Jan H. Hoh (1998) Early intermediates in spermidine-induced DNA
    condensation on the surface of mica.J. Am. Chem. Soc., 120, 35
    [18] Kenneth A. Marx, George C. Ruben (1983) Evidence for hydrated spermidine-calf
    thymus DNA toruses organized by circumferenial DNA wrapping. Nucleic Acids
    Research, 11, 1839-1854
    [19] Yuko Yoshikawa, Kenichi Yoshikawa, Toshio Kanbe (1999) Formation of a giant toroid from
    long duplex DNA. Langmuir, 15, 4085-4088
    [20] T. T. Nguyen, I rouzina, B. I. Shklovskii (2000) Reentrant condensation of DNA induced
    by multivalent counterions. Journal of Chemical Physics, 12, 2562-2568
    [21] Yoshihiro Murayama, Yoshihiko Sakamaki, Masaki Sano (2003) Elastic response of
    single DNA molecules exhibits a reentrant collapsing transition. Physical Review Letters
    90, 1, 08102
    [22] F. T. Chien, S. G. Lin, P. Y. Lai, C. K. Chan (2007) Observation of two forms of
    conformations in the reentrant condensation of DNA. Physical Review E, 75, 041922
    [23] F. Wittel, F. Kun, H. J. Hermann, B. H. Kroplin (2004) Fragmentation of Shells. Physical
    Review Letters, 93, 3, 035504
    [24] Emily S. C. Ching, S. L. Lui, Ke-Qing Xia (2000) Energy dependence of impact
    fragmentation og long glass rods. Physica A, 287, 83-90
    [25] H. C. Newman, K. M. Prise, M. Folkard, B. D. Michael (1997) DNA double-strand break
    distributions in X-ray and a-particle irradiated V79 cells: evidence for non-random
    breakage. Int. J. Radiat. Biol., 71, 4, 347-363
    [26] Sergio Gurrieri, K. Sam Wells, Iain D. Johnson, Carlos Bustamante (1997) Direct
    visualization of individual DNA molecules by fluorescence microscopy: characterization
    of the factors affecting signal/background and optimization of imaging conditions using
    YOYO. Analytical Biochemistry, 249, 44-53
    [27] http://en.wikipedia.org/wiki/Poisson_distribution
    [28] J. Aitchison, J. A. C. Brown (1957) The Log-Normal Distribution. Cambridge University
    Press
    [29] Eckhard Limpert, Werner A. Stahel, Markus Abbt (2001) Log-normal distributions across
    the sciences: keys and clues. BioScience, 341, 51, 5
    [30] Hays S. Rye, Stephen Yue, David E. Wemmer, Mark A. Quesada, Richard P. Haugland,
    Richard A. Mathies, Alexander N.Glazer (1992) Stable fluorescent complexes of
    double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and
    applications. Nucleic Acids Research, 20, 11, 2803-2812
    [31] Qi Gao, Loren Dean Williams, Martin Egli, Dov Rabinovich, Shun-Le Chen, Gary J.
    Quigley, Alexander Rich (1991) Drug induced DNA repair: X-ray structure of a
    DNA-ditercalinium complex. Proc. Natl. Acad. Sci. USA, 88, 2422-2426
    [32] Yoshihiro Murayama, Masaki Sano (2005) Exchange of counterions in DNA
    condensation. Biopolymers, 77, 354-360
    [33] Hongda Wang, Ralph Bash, Jiya G. Yodh, Gordon L. Hager, D. Lohr, Stuart M. Lindsay
    (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of
    chromatin. Biophysical Journal, 83, 3619–3625
    [34] Jean-Louis Viovy (2000) Electrophoresis of DNA and other polyelectrolytes: physical
    mechanisms. Reviews of Modern Physics, 72, 3, 813-824
    [35] Oscar J. Lumpkin, Philippe Dejardin, Bruno H. Zimm (1985) Theory of gel
    electrophoresis of DNA. Biopolymers, 24, 1573-1593
    [36] Mounir Maaloum, Nadine Pernodet, Bernard Tinland (1998) Agarose gel structure using
    atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis,
    19, 1606-1610
    [37] The NanoWizard AFM, User Manual (2006) JPK Instruments
    [38] http://www.spmtips.com/nsc15/al-bs
    [39] Zhiguo Liu, Zhuang Li, Hualan Zhou, Gang Wei, Yonghai Song, Li Wang (2005)
    Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid.
    Microscopy Research and Technique, 66, 179-185
    [40] P. Samori, V. Francke, T. Mangel, K. Mullen, J. R. Rabe (1998)
    Poly-para-phenylene-ethynylene assemblies for a potential molecular nanowire: an SFM
    study. Optical Materials, 9, 390-393
    [41] Naomi Miyazawa, Takahiro Sakaue, Kenichi Yoshikawa, Raoul Zana (2005)
    Rings-on-a-string chain structure in DNA. The journal of chemical physics, 122,
    044902

    QR CODE
    :::