跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱中威
Chung-Wei Chiu
論文名稱: 分集結合技術在相關性中上衰落通道上之二階統計特性
Second-Order Statistics of Diversity Combining Receptions over Correlated Nakagami-m FadingChannels
指導教授: 林嘉慶
Jia-Chin Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 89
中文關鍵詞: 平均衰落期間水平跨越比例
外文關鍵詞: average fade duration, level crossing rate
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,為了兼顧實用與理論,在實驗室中產生了相關性複數中上衰落通道並且分析相關性通道上分集結合之二階統計特性-水平跨越比例和平均衰落區間。在最大-比率結合的推導中 [20],利用了匹配濾波器的概念並且假設接收到的信號彼此間是獨立的。而在先前的研究中[45], [46], [49],他們也是直接利用傳統的最大-比率結合定義-封包平方和。但當接收到的信號間有相關性時,最大-比率結合的傳統定義是錯誤的並且失去了最大訊雜比的優勢。在相關性通道中,最大-比率結合是依照KL 展開式推導獲得 [28],所以在做最大比率結合前,需要消除信號間的相關性,才能使訊號擁有最大訊雜比。


    In practice and in theory, correlated complex Nakagami-m fading channels are generated in a laboratory environment, level crossing rate and average fade duration of diversity
    combining over correlated Nakagami-m fading channels are analyzed in this paper. In the derivation of maximal-ratio combining [20], it uses the concept about matched filter and assumes that received signals are independent. The maximal-ratio combining method that was conventionally employed in the previous studied [45], [46], [49] directly sums envelope squares across all branches. If the fading channels are correlated, this method is definitely incorrectly performed and undoubtedly loses its predominance. By definition, when the fading channels are correlated, the MRC should be derived in accordance with the KL expansion theorem for random processes [28]. As a result, a whitening process has to be conducted prior to the power accumulation process for the maximum SNR.

    Contents…... ............................................................................. iii List of Figures ............................................................................ v List of Tables ........................................................................... vii Chapter 1 Introduction .......................................................... 1 Chapter 2 Review of Nakagami-m Channel Models ........... 4 2.1 Channel Models ................................................................................ 4 2.2 Nakagami-m Fading Channels........................................................ 12 2.3 First-Order Statistics ....................................................................... 15 2.3.1 Outage Probability ............................................................. 15 2.3.2 Average Bit Error Probability ............................................ 15 2.3.3 Channel Capacity ............................................................... 16 2.4 Second-Order Statistics .................................................................. 19 2.4.1 Level Crossing Rate........................................................... 19 2.4.2 Average Fade Duration ...................................................... 20 2.5 Diversity Combining ...................................................................... 20 2.5.1 Diversity Methods ............................................................. 21 2.5.2 Combining Techniques ...................................................... 22 Chapter 3 Fading Simulators .............................................. 24 3.1 Clarke‘s Fading Channel ................................................................ 25 3.2 The Nakagami-m Simulator Based on Sum-of-Sinusoids .............. 27 3.3 Correlated Fading Branches ........................................................... 29 3.3.1 Cholesky Decomposition ................................................... 29 3.3.2 Q.T. Zhang‘ Method .......................................................... 33 3.4 Complex Simulator ......................................................................... 39 Chapter 4 Second-Order Statistics of Diversity Combining over Correlated Nakagami-m Fading Channels42 4.1 On Nakagami-m Fading Channels .................................................. 42 4.2 On Equal-Gain Combining over Correlated Nakagami-m Fading Channels ........................................................................................ 46 4.2.1 Non-identical Case ............................................................ 46 4.2.2 Identical Case .................................................................... 50 4.3 On Selection Combining over Correlated Nakagami-m Fading Channels ........................................................................................ 53 4.3.1 Non-identical Case ............................................................ 53 4.3.2 Identical Case .................................................................... 57 4.4 On Maximal-Ratio Combining over Correlated Nakagami-m Fading Channels ............................................................................ 59 4.4.1 Identical Case .................................................................... 60 4.4.2 Non-identical Case ............................................................ 63 Chapter 5 Second-Order Statistics of Maximal-Ratio Combining over Whitened Nakagami-m Fading Channels ................................................ 66 5.1 On Maximal-Ratio Combining over L- Branch Correlated Nakagami-m Fading Channels....................................................... 66 5.1.1 Identical Case .................................................................... 67 5.1.2 Non-identical Case ............................................................ 69 5.2 Correlation of Complex Signals ..................................................... 71 5.3 Whitening Method .......................................................................... 74 5.3.1 Eigen Decomposition ........................................................ 74 5.3.2 Cholesky Decomposition ................................................... 75 5.4 Simulation Results ............................................................................ 76 5.4.1 Parameter Settings ............................................................. 76 5.4.2 Simulated and Theoretical Covariance Matrix .................. 77 5.4.3 Simulated and Theoretical PDF, LCR and AFD ................ 78 Chapter 6 Conclusions ......................................................... 82 Bibliography ............................................................................. 83

    [1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.
    Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [2] A. Goldsmith, Wireless Communications, Stanford University Press, 2003.
    [3] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
    McGraw-Hill, 2008.
    [4] M. Abramowitz and I. A. Stegun, Handbook of Mathenatical Functions. New
    York: Dover Publications, 1972.
    [5] G. Fraidenraich, J. C. S. S. Filho, and M. D. Yacoub, ―Second-order statistics of
    maximal-ratio and equal-gain combining in Hoyt fading,‖ IEEE Commun. Lett.,
    vol. 9, no. 1, pp. 19-21, Jan. 2005.
    [6] B. Chytil, ―The distribution of amplitude scintillation and the conversion of
    scintillation indices,‖ J. Atmos. Terr. Phys., vol. 29, pp. 1175-1177, Sep. 1967.
    [7] C. X. Wang, N. Youseef, and M. Patzold, ―Level-crossing rate and average
    duration of fades of deterministic simulation models for Nakagami-Hoyt fading
    channels,‖ in Proc. WPMC’02, Honolulu, HI, Oct. 2002, pp.272-276.
    [8] A. Mehrnia and H. Hashemi, ―Mobile satellite propagation channel part II—A
    new model and its performance,‖ in Proc IEEE Vehicle Technology Conf. (VTC’
    99), Amsterdam, The Netherlands, Sep. 1999, pp. 2780-2784.
    [9] A. Annamalai, C. Tellambura, and V. K. Bhargava, ―Simple and accurate
    methods for the outage analysis in cellular mobile radio systems—A unified
    approach,‖ IEEE Trans. Commun., vol. 49, pp. 303-316, Feb. 2001.
    [10] M. K. Simon and M. S. Alouini, ―A unified approach to the performance analysis
    of digital communication over generalized fading channels,‖ in Proc. IEEE, vol.
    86, Sep. 1998, pp. 1860-1877.
    [11] M. Nakagami, ―The m-distribution–a general formula of intensity distribution of
    rapid fading,‖ Statistical Methods in Radio Wave Propagation, W. C. Hoffman,
    Ed. Elmsford, NY: Pergamon, 1960.
    [12] T. Aulin, ―A modified model for the fading signal at a mobile radio channel,‖
    IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182-203, Aug. 1979.
    [13] H. Suzuki, ―A statistical model for urban radio propagation,‖ IEEE Trans.
    Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
    [14] T. M. Wu, ―Generation of Nakagami-m fading channels,‖ IEEE VTC, vol. 6, pp.
    2787-2792, May 2006.
    [15] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,
    2nd ed. New York: Wiley, 2005.
    [16] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and
    Techniques. New York: McGraw-Hill, 1966.
    [17] C. E. Shannon, ―A mathematical theory of communication,‖ Bell Syst. Tech. J.,
    vol. 27, pp.379-423, Oct. 1948.
    [18] R. J. McEliece and W. E. Stark, ―Channels with block interference,‖ IEEE Trans.
    Inform. Theory, pp. 44-53, Jan. 1984.
    [19] W. C. Y. Lee, ―Statistical analysis of the level crossings and duration of fades of
    the signal from an energy density mobile radio antenna,‖ Bell Syst. Tech. J., vol.
    46, pp. 417-448, 1967.
    [20] D. G. Brennan, ―Linear diversity combining techniques,‖ in Proc. IRE, vol.47,
    Jun. 1959, pp. 1075-1102.
    [21] R. H. Clarke, ―A statistical theory of mobile-radio reception,‖ Bell Syst. Tech. J.,
    vol. 47, pp.957-1000, Jul-Aug. 1968.
    [22] W. C. Jakes, Jr., Ed., Microwave Mobile Communication. New York: Wily, 1974.
    [23] K. Zhang, Z. Song, and Y. L. Guan, ―Cholesky decomposition model for
    correlated MRC diversity systems in Nakagami fading channels,‖ IEEE VTC, vol.
    3, pp. 1515-1519, Sep. 2002.
    [24] Q. T. Zhang, ―Efficient generation of correlated Nakagami fading channels with
    arbitrary fading parameter,‖ in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
    [25] J. C. S. S. Filho and M. D. Yacoub, ―Highly accurate ? ?? Approximation to
    the sum of M independent nonidentical Hoyt variates,‖ Electron. Lett., vol. 4, no.
    6, pp. 436-438, Mar. 2005.
    [26] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes ―On higher order statistics
    of the Nakagami-m distribution,‖ IEEE Trans. Veh. Technol., vol. 48, pp.
    2360-2369, May 1991.
    [27] P. Dent, G. E. Bottomley, and T. Croft, ―Jakes‘ fading model revisited,‖ Electron.
    Lett., vol. 29, no. 13, pp. 1162-1163, Jun. 1993.
    [28] H. Stark and J. W. Woods, Probability and Random Processes with Application
    to Signal Processing, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
    [29] M. F. Pop and N. C. Beaulieu, ―Limitations of sum-of-sinusoids fading channel
    simulators,‖ IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, Apr. 2001.
    [30] R. T. Smith and R. B. Minton, Calculus, 2ed ed. New York: McGraw-Hill, 2002.
    [31] S. Kotz and J. Adams, ―Distribution of sum of identically distributed
    exponentially correlated gamma variables,‖ Annals Math. Stat., vol. 35, pp.
    227–283, Jun. 1964.
    [32] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
    systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
    vol. 46, no. 11, pp. 1141-1150, Nov. 1998.
    [33] M. D. Yacoub, G. Fraidenraich, and J. C. S. Santos Filho, ―Nakagami-m
    phase-envelope joint distribution,‖ Electron. Lett., vol. 41, no. 5, Mar.2005.
    [34] N. Youssef, T. Munakata and M. Takeda, ―Fade statistics in Nakagami fading
    environments,‖ in Proc. IEEE Int. Symp. Spread Spectrum Techniques and
    Applications, Mainz, Germany, 1996, pp. 1244–1247.
    [35] L. Yang and M. –S. Alouini, ―Average level crossing rate and average outage
    duration of generalized selection combining,‖ IEEE Trans. Commun., vol. 51, no.
    12, pp. 1997-2000, Dec. 2003.
    [36] G. L. Siqueira and E. J. A. Vasquez, ―Local and global signal variability statistics
    in a mobile urban environment,‖ Kiuwer Wireless Pers. Commun., vol. 15, no. 1,
    pp. 61-78, Oct. 2000.
    [37] S. O. Rice, ―Statistical properties of a sine wave plus random noise,‖ Bell System
    Tech. J., vol. 27, pp. 109-157, Jan. 1948.
    [38] S. O. Rice, ―Mathematical analysis of random noise,‖ Bell System Tech. J., vol.
    23, pp. 282-332, Jul. 1944.
    [39] R. S. Hoyt, ―Probability functions for the modulus and angle of the normal
    complex variate,‖ Bell System Tech. J., vol. 26, pp. 318-359, Jan. 1947.
    [40] W. C. Y. Lee, ―Level crossing rates of an equal-gain predetection diversity
    combiner,‖ IEEE Trans. Commun. Technol., vol. COM-18, pp. 417-426, Aug.
    1970.
    [41] F. Adachi, M. T. Feeney, and J. D. Parson, ―Effects of correlated fading on level
    crossing rates and average fade durations with predetection diversity reception,‖
    Proc. Inst. Elect. Eng., vol. 135, pp. 11-17, Feb. 1988.
    [42] W. R. Braun and U. Dersch, ―A physical mobile radio channel model,‖ IEEE
    Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
    [43] K.W. Chan, Second-Order Statistics for Diversity Combining Techniques in
    Nakagami Fading Channels, National Central University, June 2009
    [44] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
    systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
    vol. 46, no. 11, pp. 1459-1467, Nov. 1998.
    [45] Q. T. Zhang, ―Maximal-ratio combining over Nakagami fading channels with an
    arbitrary branch covariance matrix,‖ IEEE Trans. Veh. Technol., vol. 48, no. 4,
    pp. 1141-1150, Jul. 1999.
    [46] D. Li and V. K. Prabhu, ―Average level crossing rates and average fade durations
    for maximal-ratio combining in correlated Nakagami channels,‖ in Proc. WCNC,
    Mar. 2004, pp. 339-344.
    [47] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, ―On the multivariate
    Nakagami-m distribution with exponential correlation,‖ IEEE Trans. Commun.,
    vol. 51, no. 8, Aug. 2003.
    [48] J. Reig, ―Multivariate Nakagami-m distribution with constant correlation
    model,‖ Int. J. Electron. Commun. (AEU), vol. 63, no. 1, Jan.
    [49] V. A. Aalo, ―Performance of maximal-ratio diversity systems in a correlated
    Nakagami-m fading environment,‖ IEEE Trans. Commun., vol. 43, no. 8, pp.
    2360-2369, Aug. 1995.
    [50] O. C. Ugweje and V. A. Aalo, ―Performance of selection diversity system in
    correlated Nakagami fading,‖ IEEE VTC, vol. 3, pp. 1488-1492, May 1997.
    [51] M. S. Alouini, A. Abdi, and M. Kaveh, ―Sum of gamma variates and
    performance of wireless communication systems over Nakagami-fading
    channels,‖ IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471-1480, Nov. 2001.
    [52] J. Reig and N. Cardona, ―Nakagami-m approximate distribution of sum of two
    Nakagami-m correlated variables,‖ Electron. Lett., vol. 36, no. 11, pp. 978-980,
    May 2000.
    [53] J. Reig, L. Rubio and N. Cardona, ―Bivariate Nakagami-m distribution with
    arbitrary fading parameters, ‖ Electron. Lett., vol. 38, no. 25, pp. 1715-1717, Dec.
    2002.
    [54] C. Tellambura, A. Annamalai, and V. K. Bhargava, ―Contour Integral
    Representation for Generalized Marcum-Q Function and Its Application to
    Unified Analysis of Dual-Branch Selection Diversity over Correlated
    Nakagami-m Fading Channels,‖ IEEE VTC, vol. 2, pp. 1031-1034, May 2000.
    [55] Lin Yang and Mohamed-Slim Alouini, ―An Exact Analysis of the Impact of
    Fakding Correlation on the Average Level Crossing Rate and Average Outage
    Duration of Selection Combining,‖ IEEE VTC, vol. 2, pp. 241-245, Apr. 2003.
    [56] Chantri Polprasert and James A. Ritcey, ―A Nakagami Fading Phase Difference
    Distribution and its Impact on BER Performance,‖ IEEE Trans. Wireless
    Commun., vol. 7, no. 7, pp. 2805-2813, Jul. 2008.
    [57] Jia-Chin Lin, ―A modified PN code tracking loop for direct-sequence
    spread-spectrum communication over arbitrarily correlated multipath fading
    channels,‖ IEEE Journ. Select. Area. Commun., vol. 19, no. 12, pp. 2381-2395,
    Dec. 2001.
    [58] Jia-Chin Lin, ―Differentially coherent PN code acquisition based on a matched
    filter for chip-asynchronous DS/SS communications,‖ IEEE Trans. Vehic.
    Technol., vol. 51, no. 6, pp. 1596-1599, Nov. 2002.
    [59] Jia-Chin Lin, ―Differentially coherent PN code acquisition with full-period
    correlation in chip-synchronous DS/SS receivers,‖ IEEE Trans. Commun., vol.
    50, no. 5, pp. 698-702, May 2002.
    [60] Jia-Chin Lin, ―A frequency offset estimation technique based on frequency error
    characterization for OFDM communication on time-varying multipath fading
    channels,‖ IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May
    2007.
    [61] Jia-Chin Lin, ―Coarse frequency offset acquisition via subcarrier differential
    detection for OFDM communications,‖ IEEE Trans. Commun., vol. 54, no. 8, pp.
    1415-1426, Aug. 2006.

    QR CODE
    :::