跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉弘毅
Hung-Yi Yeh
論文名稱: 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析
Analysis of variation in visibility and aerosol properties over Taichung city based on satellite and ground observations
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 能見度懸浮微粒濃度氣膠光學厚度相對溼度氣膠種類土地覆蓋種類
外文關鍵詞: Land Use/Land Cover
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台中地區近年來的發展十分迅速,在都市擴建的同時台中地貌也
    隨之變化,而導致多樣的汙染問題。因此大氣中的懸浮微粒(Particulate
    Matter, PM)被視為最受關注的空氣汙染物,然而大多數人還會透過觀
    測大氣能見度(Visibility)做為判斷空氣汙染程度的依據。為了解台中
    地區長期空氣污染之變化,除了透過地面觀測之能見度與PM2.5 濃度
    外,並利用Terra 衛星搭載MODIS (Moderate Resolution Imaging
    Spectroradiometer)AOD 產品,配合正規化氣膠指數 (Normalized
    Gradient Aerosol Index, NGAI) 辨識氣膠種類,探討台中地區氣膠的
    變化情形。此外亦藉由Landsat 衛星所觀測多波段影像進行土地覆蓋
    分類,分析台中地區氣膠變化的原因與土地利用改變之關係,結果顯
    示從1993 年至2016 年台中市地表覆蓋物的總面積中,植被減少16%、
    人工建物增加11%,顯示台中地區地表覆蓋物的明顯變化,且2006
    年開始出現的沙塵顯示氣膠種類變化。觀測結果亦證實不同大氣條件
    與土地利用改變對於台中地區的能見度具有相當程度的影響,透過地
    面觀測和衛星資料的結合,若能得到更佳解析度的氣膠與氣象場資料,
    對於空氣污染的防治也會有所幫助。


    Visibility is an indicator usually used by residents to evaluate air
    quality in urban area. And most people think that the air pollution in
    PM2.5 concentration getting more serious over Taichung city. Actually, the
    value of visibility could be affected by not only air pollutants but also
    meteorological parameters, such as aerosol type, water vapor and planetary
    boundary layer height. All of the factors will be resulted in the variation of
    atmospheric extinction which is the most significant to visibility. Therefore,
    to identify each effect is essential to understand and prevent the worse
    visibility phenomenon, which is the main objective of this study.
    As the main component of air pollutants, the relationship with
    visibility will be examined at first in this study. Both ground-based
    measurements and satellite observations are collected for the analysis. The
    measurements of visibility and PM2.5 concentration are collected from
    ground station. To obtain the temporal and spatial information, the aerosol
    optical depth (AOD) retrieved from MODIS (Moderate Resolution
    Imaging Spectroradiometer) over study area is employed and associated
    with the NGAI (Normalized Gradient Aerosol Index) approach to identify
    the aerosol type in Ds (Dust), AP (Artificial Pollutants), BB (Biomass
    Burning). And the land use/land cover changes are also analyzed with
    Landsat imagery.
    Although ground based measurements show that air pollution in
    Taichung area has decreased, but satellite observations do not show that
    same results. Therefore, long-term data shows high relative humidity (RH)
    go with low visibility. And NGAI aerosol types appear Ds from 2006 to
    2017, but AP remains the main source of aerosol. Compare land use result
    from 1993 to 2016, showing huge changes in Taichung. Understanding the
    reason about aerosol type and meteorological parameters change is
    important.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 背景說明與文獻回顧 1 1.2 研究目的 5 第二章 研究方法與資料收集 8 2.1 研究方法 8 2.1.1 能見度(Visibility) 10 2.1.2 氣膠光學厚度(Aerosol Optical Depth, AOD) 11 2.1.3 懸浮微粒(Particulate Matter, PM) 12 2.1.4 正規化氣膠指數(Normalized Gradient Aerosol Index, NGAI) 14 2.2 觀測儀器與資料簡介 16 2.2.1 懸浮微粒測定儀VEREWA F701 16 2.2.2 MODIS 感測器 17 2.2.3 Landsat 衛星 19 2.3 資料收集 22 2.3.1 資料介紹 22 2.3.2 中央氣象局台中氣象站 22 2.3.3 環保署空氣品質監測站 24 2.3.4 Landsat 5、Landsat 7 與Landsat 8 衛星多波段影像 24 2.3.5 MODIS 氣膠光學厚度 25 2.3.6 GMAO 行星邊界層高度 26 第三章 結果與討論 28 3.1 台中地區能見度與PM2.5 濃度統計結果之分析 28 3.2 台中地區相對濕度對於能見度與PM2.5 濃度之相關性討論 35 3.3 台中地區衛星觀測結果與應用 39 3.4 台中地區地面觀測與衛星觀測差異分析 48 3.5 案例分析 57 第四章 結論及展望 69 4.1 結論 69 4.2 未來展望 71 參考文獻 72

    Brimblecombe, P. (2011). The big smoke: a history of air pollution in London since medieval times. Routledge.
    Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J.
    E. Hansen, and D. J. Hofmann (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423-430.
    Covert, D. S., Charlson, R. J., & Ahlquist, N. C. (1972). A study of the
    relationship of chemical composition and humidity to light scattering by aerosols. Journal of Applied Meteorology, 11(6), 968-976.
    Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society, 130(1), 28-29.
    Husar, R. B., Holloway, J. M., Patterson, D. E., & Wilson, W. E.(1981).
    Spatial and temporal pattern of eastern US haziness: a summary. Atmospheric Environment (1967), 15(10-11), 1919-1928.
    Koelmans, A. A., M. T. O. Jonker, G. Cornelissen, T. D. Bucheli, P. C. M.
    van Noort, and Ö . Gustafsson (2006), Black carbon: The reverse of its
    dark side, Chemosphere, 63, 365–377.
    Koshmieder, H.,“Theorie Der Horizontalen Sichweite II : Kontrast Und
    Sichtweite Beitrage Zur Physik Der Freien,”Atmosphere, Vol.12,
    pp.171-181, 1925.
    Lin, T.-H., Liu, G.-R., & Liu, C.-Y. (2016). A novel index for
    atmospheric aerosol type categorization with spectral optical depths
    from satellite retrieval. Int. Arch. Photogramm. Remote Sens. Spat.
    Inf. Sci, 277-279.
    Penner, J. E., H. Eddleman, and T. Novakov. (1993), Towards the
    development of a global inventory for black carbon emissions, Atmos.
    Environ., 27, 1277–1295.
    Ramachandran, S., & Kedia, S. (2010). Black carbon aerosols over an
    urban region: radiative forcing and climate impact. Journal of
    Geophysical Research: Atmospheres, 115(D10).
    Ramana, M. V., Ramanathan, V., Feng, Y., Yoon, S. C., Kim, S. W.,
    Carmichael, G. R., & Schauer, J. J.(2010). Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nature Geoscience, 3(8), 542-545.
    Seinfeld, J. H., Pandis, S. N., & Noone, K. (1998). Atmospheric chemistry and physics: from air pollution to climate change: AIP.
    Singh, A., Bloss, W. J., & Pope, F. D. (2015). Remember, remember the 5th of November; gunpowder, particles and smog. Weather, 70(11), 320-324.
    Tie, X., Huang, R. J., Dai, W., Cao, J., Long, X., Su, X., ... & Li, G.(2016).
    Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific reports, 6.
    Tzu-Chin Tsai, Yung-Jyh Jeng, D. Allen Chu, Jen-Ping Chen, Shuenn- Chin Chang. (2011). Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment , 45, 4777-4788.
    Watson, J. G. (2002). Visibility: Science and regulation. Journal of the
    Air & Waste Management Association, 52(6), 628-713.
    Wilkins, E. T. (1954). Air pollution and the London fog of December, 1952. Journal of the Royal Sanitary Institute, 74(1), 1-21.
    Zhuang, B., Wang, T., Liu, J., Li, S., Xie, M., Han, Y., . . . Zhu, J.(2017).
    The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. Atmos. Chem. Phys., 17(2), 1143-1160.
    孫達旻.(2018). 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用. (碩士), 國立中央大學, 桃園市.

    QR CODE
    :::