跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳東益
Dong-Yi Wu
論文名稱: 以LMI為基礎的主動式電力濾波器之T-S模糊控制器設計
T-S Fuzzy Controller Design Based on LMI for a shunt Active Power Filter System
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 主動式電力濾波器功率因數T-S模糊控制器電流諧波
外文關鍵詞: power factor, current harmonics, T-S fuzzy controller, Active power filter
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對諧波改善提出解決方法,過去並聯式主動濾波器常用的控制器為比例積分微分控制器,當控制器的參數面臨不同負載變化時,控制器的參數可能必須經過重新調整。因此本文提出T-S模糊控制方法,應用於單相並聯式主動電力濾波器,以改善功率因數與減少輸入電流諧波,另外所採用的並聯式主動電力濾波器,其目的是降低電流諧波使得輸入電流為正弦波並與市電電壓同相。T-S模糊模型控制器的設計是藉由平行分佈補償器的設計方法,其中穩定的控制器回授增益值與共同之正定矩陣,乃基於李亞普諾夫穩定定理為基礎,最後藉由線性矩陣不等式求解,以確保每個子系統均能滿足李亞普諾夫不等式。最後以模擬與實驗結果證明本論文所提出的控制方法之可行性,的確能夠改善功率因數與降低電流諧波。


    This thesis offers an effective solution which mainly improves the harmonic problem of active power filter. In the past, most shunt active power filters use proportional integral and differential (PID) controller. When using fixed-gain PID controllers, it is necessary to retune the parameters for different operation conditions. Therefore, we propose a T-S fuzzy controller for a single-phase shunt active power filter to improve line power factor and reduce line current harmonics. Furthermore, the capability of shunt active power filter is able to control the supply current to be a sinusoidal wave with low current harmonics and in phase with the line voltage. The T-S fuzzy modeling and the so-called parallel distributed compensation is employed to design fuzzy controllers from the T-S fuzzy models. For the designed fuzzy control systems based on Lyapunov stability theory, the problem of finding stable feedback gains and a common Lyapunov function are solved by linear matrix inquality. Finally, simulation and experimental results show that the system performance, such as power factor and total harmonic distortion, has been much improved.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 電力品質簡介 2 1.2.1 功率因數之定義 3 1.2.2 諧波之定義 6 1.3 諧波管制標準 7 1.4 論文內容大綱 11 第二章 電力品質改善原理 12 2.1 諧波改善的方法 12 2.2 論文之系統架構分析 16 2.2.1 全橋式交-直流轉換器原理分析 17 2.2.2 單極性切換模式分析 18 2.2.3 雙極性切換模式分析 20 第三章 T-S模糊控制分析與硬體電路設計 25 3.1 前言 25 3.2 系統線性化分析 26 3.3 T-S模糊控制器設計 29 3.3.1 T-S模糊模型 29 3.3.2 利用平行分佈補償器設計控制器規則 32 3.3.3 穩定度分析與控制器增益設計 33 3.3.4 系統參數設計 35 3.4 硬體架構 37 3.4.1 感測及運算控制模組 38 3.4.2 功率級模組 38 3.4.3 電源供應模組 39 3.5 感測及運算控制模組電路分析 40 3.5.1 數位訊號微控制器 40 3.5.2 驅動級電路 40 3.5.3 電壓偵測電路 41 3.5.4 電流感測電路 42 3.5.5 零點偵測電路 42 3.6 功率級模組電路分析 43 3.6.1 全橋式交-直流轉換器電容設計 43 3.6.2 全橋式交-直流轉換器電感設計 44 3.7 電源供應模組電路分析 44 3.7.1 電源保護 44 3.7.2 EMI濾波器 45 3.7.3 獨立驅動穩定電源電路 45 3.7.4 直流穩壓電路 46 第四章 模擬與實驗結果 47 4.1 模擬與實驗架構 47 4.2 穩態之模擬與實驗 48 4.2.1 200W之模擬與實驗 49 4.2.2 400W之模擬與實驗 51 4.2.3 600W之模擬與實驗 53 4.2.4 諧波失真比較 55 4.2.5 功因與電流諧波補償前後之比較 57 4.3 暫態之模擬與實驗 58 4.3.1 主動式濾波器啟動之模擬與實驗 59 4.3.2 加卸載之模擬與實驗 60 4.3.3 加載之模擬與實驗 62 4.3.4 卸載之模擬與實驗 63 第五章 結論與未來研究方向 65 5.1 結論 65 5.2 未來研究方向 66 參考文獻 67 附 錄 A 70 作者簡介 72

    [1]宋自恆、林慶仁,”功率因數修正電路之原理與常用元件規格 “,新電子科技雜誌第217 期.2004 年4 月。
    [2]B. Singh, K. Al-Haddad and A. Chandra, “A review of
    active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, pp. 960-971, Oct. 1999.
    [3]IEC 1000-3-2, 1st Edition, 1995-03, Commission Electro technique Internationale, 3, rue de Varembé, Genève, Switzerland.
    [4]黃政雄,”用於電信電源系統諧波改善之主動電力濾波器”,私立中原大學電機所碩士論文,民國93年6月。
    [5]F. Pottker and I. Barbi, “Power factor correction of nonlinear load employing a single phase active power filter: Control strategy, design methodology and experimentation,” in Proc. PESC’97 Rec. 28th Annu. IEEE Power Electron. Spec. Conf., 1997.
    [6]H. Akagi, “New trends in active filter for improving power quality,” in Proc. 1996 Int. Conf. Power Electron., Drives Energy Syst. Ind. Growth..
    [7]J. S. Tepper and J. W. Dixon, “A simple-frequency-independent method for calculating the reactive and harmonic current in a nonlinear load,” IEEE Trans. Ind. Electron., vol. 43, Dec. 1996.
    [8]A. Nakata, A. Ueda, and A. Torii, “A method of current detection for an active power filter applying moving average to pq-theory,” in Proc. IEEE PESC’98 Rec., 1998.
    [9]S. Buso and L. Malesani, “Comparison of current control techniques for active filter applications,” IEEE Trans. Ind. Electron., vol. 45, pp. 722–729, Oct. 1998.
    [10]R. Oruganti, K. Nagaswamy and L. K. Sang, "Predicted (On-Time) equal-charge criterion scheme for constant-frequency control of single-phase boost-type," AC-DC converters,” IEEE Trans. Power Electron., vol. 13, no. 1, pp. 47-57, Jan.1998.
    [11]O. Stihi and B. T. Ooi, "A single-phase controlled-current PWM rectifier," IEEE Trans. Power Electron., vol. 3, no. 4, pp. 453-459, Oct. 1988.
    [12]S. Bhattacharya, T. M. Frank, D. M. Divan and B. Banerjee, "Active filter system implementation," IEEE Ind. Appl. Mag., vol. 4, pp. 47-63, Sep.-Oct. 1998.
    [13]T. E. Nunez-Zuniga and J. A. Pomilio, "Shunt active power filter synthesizing resistive loads," IEEE Trans. Power Electron., vol. 17, no. 2, pp. 273-278, Mar. 2002.
    [14]M. Basu, S. P. Das and G. K. Dubey, "Parallel converter scheme for high-power active power filters," IEE Proc.-Electr. Power Appl., vol. 151, no. 4, pp. 460-466, July 2004.
    [15]P. Kirawanich and R. M. O''Connell, "Fuzzy logic control of an active power line conditioner," IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1574–1585, Nov. 2004.
    [16]A. R. Ofoli and A. Rubaai, " Real-time implementation of a fuzzy logic controller for switch-mode power-stage DC–DC converters," IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1367–1374, Nov.-Dec. 2006.
    [17]F. J. Lin, P. K. Huang, C. C. Wang and L. T. Teng, "An induction generator system using fuzzy modeling and recurrent fuzzy neural network," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260–271, Jan. 2007.
    [18]T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern.,vol. SMC-15, pp. 116–132,Jan./Feb. 1985.
    [19]V. B. Sriram, S. SenGupta and A. Patra, "Indirect current control of a single-phase voltage-sourced boost-type bridge converter operated in the rectifier mode," IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1130-1137, Sep. 2003.
    [20]M. Sugeno and G. T. Kang, "Fuzzy modeling and control of multilayer incinerator," FuzzySets Syst., no. 18, pp. 329-346, 1986.
    [21]H. O. Wang, K. Tanaka, and M. F. Griffin, "Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model," Proc. FUZZ-IEEE/IFES’95, pp. 531-538, 1995.
    [22]山崎浩 著,陳連春 譯,”電子電路設計心得集錦”,建興出版社。
    [23]梁適安編譯,”高頻交換式電源供應器”,全華科技圖書。
    [24]江炫樟編譯,”電力電子學”,全華科技圖書。
    [25]dsPIC30F Family Reference Manual, Microchip Technology Inc., 2003.
    [26]黃英哲、董勝源編著,”TMS320C240原理與C語言控制應用實習”,長高科技圖書。
    [27]林毅飛,“主動式電力濾波器之參考模型適應控制設計”,國立中央大學電機所碩士論文,民國95年7月。

    QR CODE
    :::