| 研究生: |
王生樂 Sheng-Le Wang |
|---|---|
| 論文名稱: |
利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡 Wavelength and focal length tunable reflective Fresnel lenses using liquid crystal spatial light modulators |
| 指導教授: |
鄭恪亭
Ko-Ting Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 液晶 、空間光調制器 、菲涅耳區板 、繞射效率 、色序式顯示技術 |
| 外文關鍵詞: | Liquid Crystal, Spatial Light Modulator, Fresnel Zone Plate, Diffraction Efficiency, Color Sequential Technology |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗係利用反射式液晶空間光調制器(Reflective Liquid Crystal Spatial Light Modulator, 簡稱RLC-SLM)產生不同樣式之Fresnel Zone Plates (簡稱FZP),透過調制灰階、聚焦位置及對應波長等參數進行白光色彩分離暨色序式顯示的加法混色調制效果,實現即時性波長及焦距可調之反射式Fresnel光學聚焦透鏡。
首先,我們藉由Matlab進行輸入之FZP圖型資訊繪製與檢視,透過灰階調制選定適宜的參數範圍。利用RLC-SLM輸出FZP為二元相位式FZP,相較於傳統製程的FZP必須犧牲奇數圈或偶數圈的繞射效率,能有更高的光利用效率及繞射效率。當以RLC-SLM呈現之FZP其奇偶圈相位差為π時,元件之第一階繞射效率經誤差校正後約為36~38%,其結果趨近於二元相位式之FZP繞射效率理論最大值40.5%。其次,基於FZP具有高階聚焦點的現象,我們成功地透過程式碼塗改某些不必要圈數的存在,進而製造出該FZP原不存在的聚焦點。
最後,我們利用FZP將白光主要波長分離成對應顏色的聚焦點,證明FZP圖型能夠針對選定波長進行聚焦,而其他波長則呈現非完全聚焦或甚至散焦的成像結果。此外,亦利用網頁編碼器Adobe Brackets以高於人眼分辨率之影格率(frame rate)快速切換對應光源波長峰值之不同FZP形成加法混色效果,透過量測白光光源與聚焦點的光譜交互確認相符,即輸入具有多個波長峰值之光源時,焦距上會呈現對應不同顏色調制結果。換言之,可利用該方法透過FZP及加法混色法達成白光聚焦之反射式Fresnel光學聚焦透鏡。
We have successfully demonstrated electrically switchable wavelength and focal length tunable reflective Fresnel lenses using liquid crystal spatial light modulators (SLM) based on a liquid crystal on silicon (LCoS) device. The SLM device can display various Fresnel zone plates (FZP) with different grayscales, focal lengths, wavelengths, and others. On the basis of the real time switches of FZP with suitable parameters, the white light focusing based on color sequential and additive color techniques can be realized.
First, the corresponding FZPs, plotted by the software of Matlab, for different focal lengths and wavelengths with appropriate ranges of parameters were elucidated. By using such an LCoS device, the phase difference between these two adjacent ring areas of each FZP can be electrically tuned to be about π to approach the maximum focusing efficiency. After analyzing the focusing efficiency of light utilization, the experimentally obtained maximum diffraction efficiencies reached about 36-38%, close to the theoretical limit value of ~40.5%. Second, regarding the FZPs having characteristics of several orders of focal points, we successfully removed the unnecessary rings of FZPs to achieve a new focal point, which was absent in the original FZP. Finally, we also used FZPs to separate the white light, the mixing light of three wavelengths of 632.8 nm, 532 nm, and 450 nm, to the desired color light at their focal points. This experiment proved that the FZP patterns are able to focus the light with the desired wavelength, while others are out of focus or even defocusing. Furthermore, the switching of different FZPs, which correspond to the wavelengths of 632.8 nm, 532 nm, and 450 nm, with its frame time shorter than the limitation of humans’ eyes was adopted to mix these three lights according to the additive color technique. Experimentally, the spectra of focusing lights at their focal points were consistent with the theoretical analyses. The color of the combined lights at the focal points were contributed from the main wavelengths of the incident light source. In other words, we can obtain a white focal point by using various reflective Fresnel lenses.
[1]P. F. McManamon et al., “Optical phased array technology,” Proceedings of the IEEE 84(2), 268-298 (1996).
[2]J. B. Sampsell, “Spatial light modulator,” US4954789 A (1990).
[3]F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, “Introduction To Optics,” Third Edition, Pearson International Edition, 316-317 (2007).
[4]L.-C. Lin, H.-C. Jau, T.-H. Lin, and Andy Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900-2906 (2007).
[5]K.-T. Cheng, C.-K. Liu, C.-L. Ting, and Andy Y.-G Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078-14085 (2007).
[6]A. J. Fresnel, “Calcul de l'intensité de la lumière au centre de l'ombre d'un ecran et d'une ouverture circulaires eclairés par un point radieux,” Œuvres Complètes d'Augustin Fresnel, Imprimerie Impériale (1866).
[7]K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, “Binary phase Fresnel lenses for generation of two-dimensional beam arrays,” Appl. Opt. 30, 1347-1354 (1991).
[8]F. Reinizer. “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[9]O. Lehmann. “Über fliessende Krystalle,” Zeitschrift für Physikalische Chemie. 4, 462–72 (1889).
[10]“History and Properties of Liquid Crystals,” Nobelprize.org. Retrieved from https://www.nobelprize.org/educational/physics/liquid_crystals/history/ (2009).
[11]P. J. Collings and M. Hired, “Introduction to liquid crystals chemistry and physics,” CRC Press, London (1977).
[12]S. Chandrasekhar and G. S. Ranganath, “Structural Studies of Langmuir Films of Disc-Shaped Molecules,” Rep. Prog. Phys. 53, 57-84 (1990).
[13]松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,劉瑞祥譯,國立編譯館出版(2003).
[14]E. G. Virga, “Variatiional theories for liquid crystals,” Chapman & Hall, London (1994).
[15]王弘毅,“層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究”,國立中央大學,光電科學與工程研究所(2017).
[16]A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley-Interscience (2002).
[17]G. R. Fowles, “Introduction to Modern Optic,” Second Edition, University of Utah, New York (1975).
[18]C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 83 (1933).
[19]Ö. Yöntem and L. Onural “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28(11), 2359-2375 (2011).
[20]于國浩等,“振幅型光尋址液晶光閥裝置及其製備方法”,CN101881902A (2010).
[21]張耿維,“純相位繞射光學元件的設計並以液晶空間光調制器實現之”, 國立中央大學,光電科學與工程研究所,18-25 (2005).
[22]X. Zhu and S. Wu, “Normally black reflective twisted-nematic cell for microdisplay application,” J. Appl. Phys. 95, 7660 (2004).
[23]張國誌,“液晶空間光調制器實驗手冊”,國立成功大學物理系.
[24]林良真,“使用雙面光配向技術製作高效率與偏振無關的染料摻雜液晶Fresnel光學透鏡”,國立成功大學,光電科學與工程研究所,31-39 (2007).
[25]T.-S. Kim, “Field sequential liquid crystal display,” US7728808B2 (2003).
[26]J. W. Goodman, “Introduction to Fourier Optics,” Third Edition, Roberts & Company Publishers, 63-118 (2004).
[27]李莎、劉旭、張曉潔,“基於TFT-LCD再現的計算全息研究”,浙江大學,光學工程研究所(2006).
[28]“Product Model: JD8554 System Development Kit Operational Manual,” Jasper Display Corp. (2017).
[29]VRGuy, “The promise and perils of using Fresnel lenses,” The VRguy's Blog. Retrieved from https://vrguy.blogspot.com/2015/08/the-promise-and-perils-of-using-fresnel.html (2015).
[30]Jay, “How Lenses for Virtual Reality Headsets Work,” VR Lens Lab. Retrieved from https://vr-lens-lab.com/lenses-for-virtual-reality-headsets/ (2016).
[31]李廷彥,“繞射/折射複合透鏡最佳單元組件研究”,國立交通大學,光電工程研究所,15-18 (2004).
[32]D. K.G. de Boer, M. G.H. Hiddink, M. Sluijter, O. H. Willemsen and S. T. de Zwart, “Switchable lenticular based 2D/3D displays,” Proceedings of SPIE 6490, 64900 (2007).
[33]G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28, 971-973 (2003).
[34]W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-light imaging with fractal zone plates,” Opt. Lett. 32, 2109-2111 (2007).
[35]J. A. Monsoriu, A. Calatayud, L. Remón, W. D. Furlan, G. Saavedra, and P. Andrés, “Bifocal Fibonacci diffractive lenses,” IEEE Photon. J. 5(3), 3400106 (2013).
[36]J. Kim, J. Na, J. Kim, and Y. Jeong, “Bi-focusing Fresnel zone plate with a reduced depth of field for enhanced detecting sensitivity,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper JTu2A.67.
[37]M. J. Simpson and A. G. Michette, “Imaging properties of modified Fresnel zone plates,” Optica Acta: International Journal of Optics 31(4), 403-413 (1984).
[38]C. Chiu, Y.-C. Lin, Paul C.-P. Chao, and Andy Y.-G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16, 19277-19284 (2008).
[39]趙昌博等,“創新異質整合智慧型手機相機模組之研究---子計畫四: 創新液晶變焦透鏡應用於手機相機模組化鏡頭之實現(III)”,國立交通大學,電機與控制工程學系,行政院國家科學委員會專題研究計畫(2010).
[40]M. Ye, B. Wang, and S. Sato, “Liquid Crystal Lens with Focus Movable in Focal Plane,” Opt. Commun. 259, 710-722 (2006).
[41]M. Ye, S. Hayasaka and S. Sato, “LiquidCrystal Lens Array with Hexagonal-Hole-Patterned Electrodes,” Jpn. J. of Appl. Phys. 43(9A), 6108-6111 (2004).