跳到主要內容

簡易檢索 / 詳目顯示

研究生: 韓沙
Hamza Qayyum
論文名稱: 光控制實用的材料製程在PEM燃料電池及光電元件上的應用
Light-controlled fabrication of functional materials for PEM fuel cell and optoelectronics applications
指導教授: 陳賜原
Szu-Yuan Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 135
中文關鍵詞: 脈衝雷射沈積量子點燃料電池脈衝雷射退火催化劑
外文關鍵詞: pulsed laser deposition, quantum dots, fuel cell, pulsed laser annealing, catalyst
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於奈米結構與奈米顆粒的薄膜對於燃料電池、熱電及光電原件科學及技術領域擁有極大的重要性。在本博士研究中發展及使用了兩個創新的光控製材料製程方法,首先是藉由惰性氣體控制脈衝雷射沉積(PLD)薄膜的羽流力學來產生奈米顆粒;第二個為藉由掃描脈衝雷射退火動態的驅使材料的相變化。

    做為第一種發法的應用,在氣體環境中的PLD使用於成長堆疊的鉑奈米顆力所構成的奈米多孔薄膜,並應用於質子交換膜燃料電池。在氬氣填充的環境下,一道10ns的532nm脈衝雷射被用來燒蝕鉑靶材,藉由改變氬氣壓力來同時優化奈米顆粒尺寸及在基板上的分散成度,進而增強PEM燃料電池的功率密度。然後將生長的催化劑層封裝成薄膜電及組件並測量其單電池性能。最一開始,PLD成長的催化計僅用於燃料電池的陽極,在鉑附載為17μgcm-2,燃料電池的電流密度再0.6V時達到1.08Acm-2,這接近於有著以E-TEK Pt/C製備200μgcm-2白金附載的陽極的電池。因此,鉑的使用減少了12倍。

    接下來,PLD被使用來成長用於陰極的催化劑。相較於陽極的氫氧化反應(HOR),由於陰極的氧化還原反應(ORR)本質上非常緩慢,所以陰極比陽極需要更多的催化劑。因此,通常陰極的ORR是個瓶頸與減少陰極側鉑使用量是降低燃料電池的成本的關鍵,當在燃料電池陰極側使用以PLD成長的催化劑,有著鉑附載為100μgcm-2時,單電池的電流密度再0.6V時達到1.2Acm-2,這接近以E-TEK Pt/C製備的00μgcm-2白金附載。此外,以PLD製備的電極,與陰陽極鉑附載總合為117μgcm-2的PEM燃料電池,再0.6V下的總鉑質量公率密度達到7.43kWg-1,約為E-TEK Pt/C電極的燃料電池的五倍。最後,藉由基於CV加速降解測試來評估催化劑/載體的電化學耐久性,發現使用PLD製備的樣品在5000個電位循環後保持其原始電化學表面積的60%,遠高於僅保留原始電化學表面積7%的E-TEK Pt/C樣品。

    第二個光控製材料製成的方法使用於在基板上製造半導體量子點以應用於紅外光偵測器及熱電材料。使用具有線輪廓的脈衝雷射(λ = 532 nm, pulse width = 10 ns)通過光熱應變來動態的控制自發性量子點的誘發以產生均勻的量子點層。有著適當的設定,可再大於4mm2的面積中型成平均高度為2.9nm、平均直徑為25nm和密度為6×1010cm-2的鍺/矽量子點。基於觀察到的量子點特性與雷射參數的關係提出一個包含雷射誘發應力、表面擴散以及Ostwald熟化的模型,以解釋鍺/矽量子典型成的機制。


    Nanostructured and/or nanoparticles based thin film are of paramount importance for very diverse fields of science and technology such as fuel cells, thermoelectric and optoelectronic devices. Two innovative methods of light controlled material fabrication developed and im- plemented during this PhD research work are outlined in this thesis. First is the pulsed laser deposition (PLD) of thin films with the plume dynamics controlled by noble gases to generate nanoparticles. Second one is the kinetically controlled phase transition of material driven by scanning pulse laser annealing.
    As a demonstrative applications of the first method, PLD in a gas atmosphere was used to grow nanoporous thin films composed of stacked nanoparticles of platinum on gas diffusion layer for application to proton-exchange membrane fuel cells. The 10 ns pulsed laser radi- ation of 532 nm wavelength was used to ablate Pt target in Ar filled chamber. Argon pressure was varied to simultaneously optimize both the particle size and dispersion of nanoparticles on the substrate to raise the electrochemical surface area of the platinum nanoparticles, which in turn resulted in the enhanced power destiny of PEM fuel cell. The grown catalyst layer was then assembled into a membrane electrode assembly and it’s single cell performance were measured. Initially the PLD grown catalyst was only used on the anode side of the fuel cell. In this case, with a Pt loading of 17 μg cm−2 the fuel-cell current density at 0.6 V reaches 1.08 A cm−2, which was close to that of a cell with the anode made by using E-TEK Pt/C of 200 μg cm−2 Pt loading. Thus the usage of Pt was decreased by 12-fold.
    Next, PLD was used to grow catalyst for the cathode side of the fuel cell. Since the oxygen reduction reaction (ORR) at the cathode is very sluggish in nature compared to hydrogen oxidation reaction (HOR) at the anode, the cathode requires a much larger amount of catalyst compared to the anode. Therefore, generally the ORR at the cathode is the bottleneck and the reduction of Pt usage at the cathode holds the key to lowering the overall cost of the fuel cell. When PLD grown catalyst was used on cathode side of the fuel cell, the current density of a single cell reached 1.2 A cm−2 at 0.6 V, at the Pt loading of 100 μg cm−2, which was close to that of a single cell using E-TEK Pt/C electrode with a cathode Pt loading of 100 μg cm−2. Further- more, for a PEM fuel cell with both electrodes prepared by PLD and a total anode and cathode Pt loading of 117 μg cm−2, the overall Pt mass-specific power density at 0.6 V reached 7.43 kW g−1, which was about 5 times higehr than that of a fuel cell with E-TEK Pt/C elec- trodes. Finally, the electrochemical durability of the catalyst/support was evaluated by using accelerated degradation test based on CV. It was found that the pulsed laser deposition sample retains 60% of its initial electrochemical surface area after 5000 potential cycles, much higher than that with E-TEK Pt/C, which retains only 7% of its initial electrochemical surface area.
    The second method of light controlled material fabrication devised during this study was used to produce semiconductor quantum dots on a substrates for application to infrared photodetector and ther- moelectric materials. A scanning pulsed laser beam (λ = 532 nm, pulse width = 10 ns) with a line profile was implemented for kinet- ically controlled induction of self-assembly of quantum dots (Ge/Si) via photo-thermal strain so as to produce a homogeneous quantum dot layer. it was demonstrated with suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. Based on the observed dependence of the characteristics of QDs on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening was proposed for the mechanism responsible the formation of Ge/Si QDs.

    Thesis layout 1 1 Introduction 3 1.1 Thin film deposition techniques . . . . . . . . . . . . . 3 1.2 Pulsed laser deposition (PLD) . . . . . . . . . . . . . . 4 1.2.1 Laser matter interaction . . . . . . . . . . . . . 6 1.2.2 Skin effect . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Pulsed laser ablation . . . . . . . . . . . . . . . 7 1.3 Introduction to fuel cells . . . . . . . . . . . . . . . . . 12 1.3.1 Proton-exchange membrane fuel cell . . . . . . . 14 1.3.2 Catalyst for PEM fuel cell . . . . . . . . . . . . 15 i ii publication 1.3.3 Components of PEM fuel cell . . . . . . . . . . 15 1.3.4 Commercialization barriers . . . . . . . . . . . . 17 1.3.5 Literature review/approaches . . . . . . . . . . 18 1.4 Germanium-Silicon Heteroepitaxy . . . . . . . . . . . . 21 1.5 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Experimental Setup and characterization techniques 25 2.1 Pulsed Laser Deposition set-up . . . . . . . . . . . . . 25 2.1.1 Vacuum chamber . . . . . . . . . . . . . . . . . 25 2.1.2 Ambient gas environment . . . . . . . . . . . . 27 2.1.3 Target and substrate carrousel . . . . . . . . . . 27 2.1.4 Laser and Optics . . . . . . . . . . . . . . . . . 28 2.2 Material Characterization Techniques . . . . . . . . . . 32 2.2.1 Scanning Electron Microscopy (SEM) . . . . . . 32 2.2.2 Raman spectroscopy . . . . . . . . . . . . . . . 33 2.2.3 Atomic force Microscopy . . . . . . . . . . . . . 34 2.2.4 X-ray Diffraction . . . . . . . . . . . . . . . . . 34 2.2.5 Cyclic Voltammetry . . . . . . . . . . . . . . . 36 2.2.6 Fuel cell performance measurement . . . . . . . 38 2.2.7 Electrochemical impedance spectroscopy . . . . 39 3 Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel publication iii cells with pulsed laser deposition 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Results and discussion . . . . . . . . . . . . . . . . . . 45 3.3.1 Formation of nanoparticles using PLD . . . . . 45 3.3.2 Performance measurement of the MEA . . . . . 48 3.3.3 Accelerated durability test . . . . . . . . . . . . 52 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Pulsed Laser Deposition of Platinum Nanoparticles as Catalyst for High-Performance PEM Fuel Cell 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Materials and Methods . . . . . . . . . . . . . . . . . . 59 4.2.1 Catalyst preparation . . . . . . . . . . . . . . . 59 4.2.2 Electrochemical measurements . . . . . . . . . . 60 4.2.3 Fabrication of MEAs and measurement of polarization curves . . . . . . . . . . . . . . . . . . 61 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . 62 4.3.1 Morphology characterizations . . . . . . . . . . 62 4.3.2 Single cell performance . . . . . . . . . . . . . . 65 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of iv publication pre-deposited Ge/Si film 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Results and discussion . . . . . . . . . . . . . . . . . . 79 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and future perspectve 93

    [1] M. LLC, “The end of fossil fuels,” (2016).
    [2] F. Hartmut and H. R. Khan, Handbook of Thin-Film Technology
    (Springer-Verlag, Berlin, 2015).
    [3] R. Eason, Pulsed laser deposition of thin films: applications-led
    growth of functional materials, first edition (John Wiley and
    Sons, Inc., 2006).
    [4] R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique
    for deposition of thin films: Physics and theoretical model,” Phy
    Rev B 41, 8843–1–13 (1990).
    [5] R. Kelly and B. Braren, “On the direct observation of the gasdynamics
    of laser-pulse sputtering of polymers,” Appl Phys B
    53, 160–169 (1991).
    [6] S. I. Anisimov, B. S. Lukyanchuk, and A. Luches, “An analytical
    model for three-dimensional laser plume expansion into vacuum
    in hydrodynamic regime,” Appl Surf Sci 2, 96–98 (1996).
    [7] T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang,
    and X. Ni, “Dynamics of the plumes produced by ultrafast laser
    ablation of metals,” J Appl Phy 108, 043,309–1–13 (2010).
    [8] C. Phipps, ed., Laser Ablation and its Applications (SpringerVerlag,
    US, 2007).
    [9] S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization
    of laser-ablation plasmas,” J Phys B 32, R131–R172
    (1999).
    97
    98
    [10] K. D. Kreuer, Fuel Cells: Selected Entries from the Encyclopedia
    of Sustainability Science and Technology (Springer New York,
    2013).
    [11] H. Tsuchiyaa and O. Kobayashib, “Mass production cost of pem
    fuel cell by learning curve,” Int J Hydrogen Energy 29, 985–990
    (2004).
    [12] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy,
    W. Liang, M. T. Sougrati, F. Jaouen, and S. Mukerjee, “Highly
    active oxygen reduction non-platinum group metal electrocatalyst
    without direct metal?nitrogen coordination,” Nat. Comm 6,
    985–990 (2015).
    [13] H. M. Barkholtz, L. Chong, Z. B. Kaiser, T. Xu, and D.-J. Liu,
    “Enhanced performance of non-pgm catalysts in air operated
    pem-fuel cells,” Int J Hydrogen Energy (2016).
    [14] Z. Q. Tian, S. H. Lim, C. K. Poh, Z. Tang, Z. Xia, Z. Luo, P. K.
    Shen, D. Chua, Y. P. Feng, Z. Shen, and J. Lin, “A highly orderstructured
    membrane electrode assembly with vertically aligned
    carbon nanotubes for ultra-low pt loading pem fuel cells,” Adv.
    Ene. Mat 1, 1205–1214 (2011).
    [15] S. Y. Huang, P. Ganesan, S. Park, and B. N. Popov, “Development
    of a titanium dioxide-supported platinum catalyst with
    ultrahigh stability for polymer electrolyte membrane fuel cell
    applications,” J Am Chem Soc. 131, 13,898–13,899 (2009).
    [16] X. X. Wang, Z. H. Tan, M. Zeng, and J. N. Wang, “Carbon
    nanocages: A new support material for pt catalyst with remarkably
    high durability,” Sci Rep 4, 4437 (2014).
    [17] S. Murata, M. Imanishi, S. Hasegawa, and R. Namba, “Vertically
    aligned carbon nanotube electrodes for high current density operating
    proton exchange membrane fuel cells,” J Power Sources
    253, 104–113 (2014).
    99
    [18] D. Sebastian, J. C. Calderon, J. A. Gonzalez-Exposito, E. Pastor,
    M. V. Martnez-Huerta, I. Suelves, R. Moliner, and M. J.
    Lazaro, “Influence of carbon nanofiber properties as electrocatalyst
    support on the electrochemical performance for pem fuel
    cells,” Int J Hydrogen Energy 35, 9934–9942 (2010).
    [19] E. Yli-Rantala, A. Pasanen, P. Kauranen, V. Ruiz, M. Borghei,
    E. Kauppinen, and E. Skou, “Graphitised carbon nanofibres as
    catalyst support for pemfc,” Fuel Cells 11, 715–725 (2011).
    [20] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “Low platinum
    loading electrodes for polymer electrolyte fuel cells fabricated
    using thermoplastic ionomers,” Electrochem Acta 40, 355–363
    (1995).
    [21] S. Litster and G. McLean, “Pem fuel cell electrodes,” J Power
    Sources 130, 61–76 (2004).
    [22] M. S. Wilson and S. Gottesfeld, “High performance catalyzed
    membranes of ultra low pt loadings for polymer electrolyte fuel
    cells,” J Electrochem Soc 139, L28–L30 (1992).
    [23] E. J. Taylor, E. B. Anderson, and N. R. K. Vilambi, “Preparation
    of high platinum utilization gas diffusion electrodes for
    proton?exchange?membrane fuel cells,” J Electrochem Soc 139,
    L45–L46 (1992).
    [24] S. Cuynet, A. Caillard, T. Lecas, J. Bigarr`e, P. Buvat, and
    P. Brault, “Deposition of Pt inside fuel cell electrodes using high
    power impulse magnetron sputtering,” J Phys D: Appl Phys 47,
    272,001 (2014).
    [25] M. Cavarroc, A. Ennadjaoui, M. Mougenot, P. Brault, R. Escalier,
    Y. Tessier, J. Durand, S. Rouald`es, T. Sauvage, and
    C. Coutanceau, “Performance of plasma sputtered fuel cell electrodes
    with ultra-low Pt loadings,” Electrochem Comm 11, 859–
    861 (2009).
    100
    [26] M. S. Cogenli, S. Mukerjee, and A. B. Yurtcan, “Membrane
    electrode assembly with ultra low platinum loading for cathode
    electrode of PEM fuel cell by using sputter deposition,” Fuel
    Cells 15, 288–297 (2015).
    [27] M. A. Raso, I. Carrillo, E. Mora, E. Navarro, M. A. Garcia,
    and T. J. Leo, “Electrochemical study of platinum deposited by
    electron beam evaporation for application as fuel cell electrodes,”
    Int J Hydrogen Energy 39, 5301–5308 (2014).
    [28] M. S. Saha, A. F. Gull`a, R. J. Allen, and S. Mukerjee, “High
    performance polymer electrolyte fuel cells with ultra-low Pt loading
    electrodes prepared by dual ion-beam assisted deposition,”
    Electrochim Acta 51, 4680–4692 (2006).
    [29] N. Cunningham, E. Irissou, M. Lefevre, M. C. Denis, D. Guay,
    and J. P. Dodelet, “Pemfc anode with very low pt loadings using
    pulsed laser deposition,” Electrochem. Solid-State Lett. 6,
    A125–8 (2003).
    [30] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, and
    C. J. Tseng, “Production of high-performance and improveddurability
    Pt-catalyst/support for proton-exchange-membrane
    fuel cells with pulsed laser deposition,” J Phys D: Appl Phys
    49, 255,601 (2016).
    [31] H. Qayyum, C.-J. Tseng, T.-W. Huang, and S. yuan Chen,
    “Pulsed laser deposition of platinum nanoparticles as a catalyst
    for high-performance pem fuel cells,” Catalysts 6 (2016).
    [32] T. Nakakubo, M. Shibata, and K. Yasuda, “Membrane electrode
    assembly for proton exchange membrane fuel cells prepared by
    sputter deposition in air and transfer method,” J Electrochem
    Soc 152, A2316–A2322 (2005).
    [33] D. Riabinina, E. Irissou, B. L. Drogoff, M. Chaker, and D. Guay,
    “Influence of pressure on the Pt nanoparticle growth modes during
    pulsed laser ablation,” J Appl Phys 108, 034,322–1–034,322–
    6 (2010).
    101
    [34] C. Hamel, S. Garbarino, E. Irissou, F. Laplante, M. Chaker, and
    D. Guay, “Influence of the velocity of Pt ablated species on the
    structural and electrocatalytic properties of Pt thin films,” Int
    J Hydrogen Energy 35, 8486–8493 (2010).
    [35] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller,
    F. J. DiSalvo, and H. D. Abruna, “Structurally ordered intermetallic
    platinum cobalt core shell nanoparticles with enhanced
    activity and stability as oxygen reduction electrocatalysts,” Nat
    Mat 12, 81–87 (2013).
    [36] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu,
    Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, and
    A. Nilsson, “Lattice-strain control of the activity in dealloyed
    core?shell fuel cell catalysts,” Nat Chem 12, 454–460 (2010).
    [37] “Advanced cathode catalysts and supports for pem fuel cells,”
    Annual Merit Review DOE Hydrogen and Fuel Cells and Vehicle
    Technologies Programs, Washington, DC (2009).
    [38] A. Kongkanand and M. F. Mathias, “The priority and challenge
    of high-power performance of low-platinum proton-exchange
    membrane fuel cells,” J Phys Chem Lett 7, 1127–1137 (2016).
    [39] Y. Xing, “Synthesis and electrochemical characterization
    of uniformly-dispersed high loading pt nanoparticles on
    sonochemically-treated carbon nanotubes,” J Phys Chem B 108,
    19,255–19,259 (2004).
    [40] P. Ramesh, M. E. Itkis, J. M. Tang, and R. C. Haddon, “Swntmwnt
    hybrid architecture for proton exchange membrane fuel
    cell cathodes,” J Phys Chem C 112, 9089–9094 (2008).
    [41] W. Zhang, P. Sherrell, A. I. Minett, J. M. Razal, and J. Chen,
    “Carbon nanotube architectures as catalyst supports for proton
    exchange membrane fuel cells,” Energy Environ. Sci. 3, 1286–
    1293 (2010).
    102
    [42] Z. M. Wang, Self-Assembled Quantum Dots (Springer New York,
    2008).
    [43] B. J. Riel, “An introduction to self-assembled quantum dots,”
    Am. J. Phys. 76, 750–757 (2008).
    [44] A. L. Efros, D. J. Lockwood, and L. Tsybeskov, Semiconductor
    Nanocrystals: From Basic Principles to Applications (Springer
    US, 2003).
    [45] A. Baskaran and P. Smerekal, “Mechanisms of stranskikrastanov
    growth,” J Appl Phys. 111, 044,321–1–6 (2012).
    [46] A. Alkhatib and A. Nayfeh, “A complete physical germaniumon-silicon
    quantum dot self-assembly process,” Sci. Rep. 3, 1–4
    (2013).
    [47] M. Borgstr¨om, V. Zela, and W. Seifert, “Arrays of Ge islands
    on Si(001) grown by means of electron-beam pre-patterning,”
    Nanotechnology 14, 264–267 (2003).
    [48] A. Karmous, A. Cuenat, A. Ronda, and I. Berbezie, “Ge dot
    qrganization on Si substrates patterned by focused ion beam,”
    Appl. Phys. Lett. 85, 6401–6403 (2004).
    [49] A. Portavoce, A. Ronda, and I. Berbezier, “Sb-surfactant mediated
    growth of Ge nanostructures,” Mat. Sci. Eng. B 89, 205–210
    (2002).
    [50] A. Beyer, E. M¨uller, H. Sigg, S. Stutz, D. Gr¨utzmacher,
    O. Leifeld, and K. Ensslin, “Size control of carbon-induced Ge
    quantum dots,” Appl. Phys. Lett. 77, 3218–3220 (2000).
    [51] Y. Wakayamaa, L. V. Sokolovb, N. Zakharovc, P. Wernerc, and
    U. G¨oselec, “Precise control of size and density of self-assembled
    Ge dot on Si (100) by carbon-induced strain-engineering,” Appl.
    Surf. Sci. 216, 419–423 (2003).
    103
    [52] A. A. Shklyaev, M. Shibata, and M. Ichikawa, “High-density
    ultrasmall epitaxial Ge islands on Si (111) surfaces with a SiO2
    coverage,” Phys. Rev. B 62, 1540–1543 (2000).
    [53] C. Dais, G. Mussler, T. Fromherz, E. M¨uller, H. H. Solak, and
    D. Gr¨utzmacher, “SiGe quantum dot crystals with periods down
    to 35 nm,” Nanotechnology 26, 255,302 (2015).
    [54] R. F. Wood and G. E. Giles, “Macroscopic theory of pulsed-laser
    annealing. i. thermal transport and melting,” Phys Rev B. 23,
    2923 (1981).
    [55] N. Nickel, Laser Crystallization of Silicon - Fundamentals to Devices
    (Elsevier, 2003).
    [56] G. Han, Y. Zeng, Y. Liu, J. Yu, B. Cheng, and H. Yang, “Small
    SiGe quantum dots obtained by excimer laser annealing,” J.
    Cryst. Growth 310, 3746–3751 (2008).
    [57] A. O. Er and H. E. Elsayed-Ali, “Excitation-induced germanium
    quantum dot formation on Si (100) - (2×1),” J. Appl. Phys. 108,
    034,303 (2010).
    [58] A. P. D. Pino, E. Gyorgy, I. C. Marcus, J. Roqueta, and
    M. I. Alonso, “Effects of pulsed laser radiation on epitaxial selfassembled
    Ge quantum dots grown on Si substrates,” Nanotechnology
    22, 295,304 (2011).
    [59] C. M. Clegg and H. Yang, “Guided assembly of quantum dots
    through selective laser heating,” Sol. Energ. Mat. Sol. C. 108,
    252–255 (2013).
    [60] D. Qi, X. Li, P. Wang, S. Chen, W. Huang, C. Li, K. Huang, and
    H. Lai, “Evolution of laser-induced specific nanostructures on
    sige compounds via laser irradiation intensity tuning,” Photon.
    J. 6, 252–255 (2014).
    [61] A. Medvid, P. Onufrijevs, G. Mozolevskis, E. Dauksta, and
    R. Rimsa, “Two-stage model of nanocone formation on a sur-
    104
    face of elementary semiconductors by laser radiation,” Nanoscale
    Research Letters . 7, 428 (2012).
    [62] H. Luth, Solid Surfaces, Interfaces and Thin Films, fourth edition
    (Springer-Verlag, Berlin, 2001).
    [63] J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers
    (Springer-Verlag, London, 2008).
    [64] M. Ciureanu and R. Roberge, “Electrochemical impedance study
    of pem fuel cells. experimental diagnostics and modeling of air
    cathodes,” J Phys Chem B 105, 3531–3539 (2001).
    [65] A. Brouzgou, S. Q. Song, and P. Tsiakaras, “Low and nonplatinum
    electrocatalysts for PEMFCs: Current status, challenges
    and prospects,” Appl Catal B: Environmental 127, 371–
    388 (2012).
    [66] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and
    Yan .
    [67] H. Xu, E. Brosha, F. Garzon, C. Johnston, F. Uribe, M. Wilson,
    and B. S. Pivovar, “Electrochemical characterization of catalyst
    utilization in half and fuel cells,” 212th ECS Meeting p. p428
    (2010).
    [68] D. Gruber, N. Ponath, J. Muller, and F. Lindstaedt, “Sputterdeposited
    ultra-low catalyst loadings for pem fuel cells,” J. Power
    Sources 150, 67–72 (2005).
    [69] B. Schwanitz, H. Schulenburg, M. Horisberger, A. Wokaun, and
    G. Scherer, “Stability of ultra-low pt anodes for polymer electrolyte
    fuel cells prepared by magnetron sputtering,” Electrocatal
    2, 35–41 (2011).
    [70] Y. C. Hsueh, C. C. Wang, C. C. Kei, Y. H. Lin, C. Liu, and
    T. P. Perng, “Fabrication of catalyst by atomic layer deposition
    for high specific power density proton exchange membrane fuel
    cells,” J. Catal. 294, 63–68 (2012).
    105
    [71] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh,
    A. Su, H. Y. Song, and L. Du, “High-performance MEA prepared
    by direct deposition of platinum on the gas diffusion layer using
    an atomic layer deposition technique,” Electrochim Acta 177,
    168–173 (2015).
    [72] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C.
    Yang, and S. K. Lo, “Effects of flow field design on the performance
    of a PEM fuel cell with metal foam as the flow distributor,”
    Int J Hydrogen Energy 37, I3060–I3066 (2012).
    [73] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang,
    and S. K. Lo, “A PEM fuel cell with metal foam as flow distributor,”
    Energ Convers Manage 62, 14–21 (2012).
    [74] A. L. Patterson, “The scherrer formula for x-ray particle size
    determination,” Phys. Rev. 56, 978–82 (1939).
    [75] J. Ma, A. Habrioux, C. Morais, A. Lewera, W. Vogel, Y. VerdeGomez,
    G. Ramos-Sanchez, P. B. Balbuena, and N. AlonsoVante,
    “Spectroelectrochemical probing of the strong interaction
    between platinum nanoparticles and graphitic domains of
    carbon,” ACS Catal. 3, 1940–50 (2013).
    [76] P. T. Yu, W. Gu, R. Makharia, F. T. Wagner, and H. A.
    Gasteiger, “The impact of carbon stability on PEM fuel cell
    startup and shutdown voltage degradation,” ECS Trans. 3, 797–
    809 (2006).
    [77] S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, K. A. Friedrich,
    and M. Schulze, “A review of platinum-based catalyst layer
    degradation in proton exchange membrane fuel cells,” J. Power
    Sources 194, 588–600 (2009).
    [78] P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, “Model for raman
    scattering from incompletely graphitized carbons,” Carbon
    20, 427–31 (1982).
    106
    [79] L. Zou, B. Huang, Y. Huang, Q. Huang, and C. Wang, “An investigation
    of heterogeneity of the degree of graphitization in
    carbon?carbon composites,” Mater. Chem. Phys. 82, 654–62
    (2003).
    [80] W. Mr`oz, B. Budner, W. Tokarz, P. Piela, and M. L. K.
    Pawlowski, “Ultra-low-loading pulsed-laser-deposited platinum
    catalyst films for polymer electrolyte membrane fuel cells,” J
    Power Sources 273, 885–893 (2015).
    [81] R. O. Hayre, S. J. Lee, S. W. Cha, and F. B. Prinz, “A sharp
    peak in the performance of sputtered platinum fuel cells at ultralow
    platinum loading,” J Power Sources 109, 483–493 (2002).
    [82] M. K. Debe, “Electrocatalyst approaches and challenges for automotive
    fuel cells,” Nature 486, 43–51 (2012).
    [83] J. M. D. Rodr`ıguez, J. A. H. Meli`an, and J. P. Pe˜na, “Determination
    of the real surface area of Pt electrodes by hydrogen
    adsorption using cyclic voltammetry,” J Chem Educ 77, 1195–
    1197 (2000).
    [84] E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad, R. Kotz,
    and T. J. Schmidt, “The effect of platinum nanoparticle distribution
    on oxygen electroreduction activity and selectivity,” Chem
    Cat Chem 6, 1410–1418 (2014).
    [85] X. Yuan, H. Wang, J. C. Sun, and J. Zhang, “AC impedance
    technique in PEM fuel cell diagnosis-A review,” Int J Hydrogen
    Energy 32, 4365–4380 (2007).
    [86] J. Zhang, C. Song, J. Zhang, R. Baker, and L. Zhang, “Understanding
    the effects of backpressure on PEM fuel cell reactions
    and performance,” J Electroanal Chem 688, 130–136 (2013).
    [87] J. Zhang, H. Li, and J. Zhang, “Effect of operating backpressure
    on PEM fuel cell performance,” ECS Trans 19, 65–76 (2009).
    107
    [88] F. F. Onana, N. Guillet, and A. M. AlMayouf, “Modified pulse
    electrodeposition of Pt nanocatalyst as high-performance electrode
    for PEMFC,” J Power Sources 271, 401–405 (2014).
    [89] H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, “Influence of
    the ionomer/carbon ratio for low-Pt loading catalyst layer prepared
    by reactive spray deposition technology,” J Power Sources
    283, 84–94 (2015).
    [90] A. Khan, B. K. Nath, and J. Chutia, “Nanopillar structured
    platinum with enhanced catalytic utilization for electrochemical
    reactions in PEMFC,” Electrochim Acta 146, 171–177 (2014).
    [91] H. N. Su, S. J. Liao, T. Shu, and H. L. Gao, “Performance
    of an ultra-low platinum loading membrane electrode assembly
    prepared by a novel catalyst-sprayed membrane technique,” J
    Power Sources 195, 756–761 (2010).
    [92] Y. Yuan, J. A. Smith, G. Goenaga, D. J. Liu, Z. Luo, and J. Liu,
    “Platinum decorated aligned carbon nanotubes: electrocatalyst
    for improved performance of proton exchange membrane fuel
    cells,” J Power Sources 196, 6160–6167 (2011).
    [93] T. A. Greszler, D. Caulk, and P. Sinha, “The impact of platinum
    loading on oxygen transport resistance,” J Electrochem Soc 159,
    F831–F840 (2012).
    [94] A. Z. Weber and A. Kusoglu, “Unexplained transport resistances
    for low-loaded fuel-cell catalyst layers,” J Mater Chem A 2,
    17,207–17,211 (2014).
    [95] Y. Zhou, G. Lin, A. J. Shih, and S. J. Hu, “Assembly pressure
    and membrane swelling in pem fuel cells,” J Power Sources 192,
    544–551 (2009).
    [96] F. Bauer, S. Denneler, and M. Willert-Porada, “Influence of temperature
    and humidity on the mechanical properties of nafion
    117 polymer electrolyte membrane,” J Polym Sci B Polym Phys.
    43, 786–795 (2005).
    108
    [97] C. J. Tseng, S. T. Lo, S. C. Lo, and P. P. Chu, “Characterization
    of Pt-Cu binary catalysts for oxygen reduction for fuel cell
    applications,” Mater Chem Phys 100, 385–390 (2006).
    [98] B. J. Su, K. W. Wang, T. C. Cheng, and C. J. Tseng, “Preparation
    of PtSn/C electrocatalysts with improved activity and durability
    toward oxygen reduction reaction by alcohol-reduction
    process,” Mater Chem Phys 135, 395–400 (2012).
    [99] K. L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled
    quantum dots and their optoelectronic device applications,”
    Proc IEEE 95, 1866–1883 (2007).
    [100] Z. Liu, T. Zhou, L. Li, Y. Zuo, C. He, C. Li, C. Xue, B. Cheng,
    and Q. Wang, “Ge/Si quantum dots thin film solar cells,” Appl.
    Phys. Lett. 103, 082,101 (2013).
    [101] H. T. Chang, S. Y. Wang, and S. W. Lee, “Designer Ge/Si composite
    quantum dots with enhanced thermoelectric properties,”
    Nanoscale 6, 3593–3598 (2014).
    [102] D. J. Eaglesham and M. Cerullo, “Dislocation-free StranskiKrastanow
    growth of Ge on Si(100),” Phys. Rev. Lett. 64, 1943–
    1946 (1990).
    [103] A. I. Yakimov, A. V. Dvurechenski, A. I. Nikiforov, S. V.
    Chaoekovski, and S. A. Tiis, “Ge/Si photodiodes with embedded
    arrays of Ge quantum dots for the near infrared (1.3–1.5
    µm) region,” Semiconductors 37, 1383–1388 (2003).
    [104] S. M. Sze, in “Physics of Semiconductor Devices,” (John Wiley
    and Sons, New York, 1981).
    [105] J. A. Floro, M. B. Sinclair, E. Chason, L. B. Freund, R. D.
    Twesten, R. Q. Hwang, and G. A. Lucadamo, “Novel SiGe island
    coarsening kinetics: Ostwald ripening and elastic interactions,”
    Phys. Rev. Lett. 84, 701–704 (2000).
    109
    [106] A. V. Kolobov, “Raman scattering from Ge nanostructures
    grown on Si substrates: Power and limitations,” J. Appl. Phys.
    87, 2926–2930 (2000).
    [107] M. Fujii, S. Hayashi, and K. Yamamoto, “Growth of Ge microcrystals
    in SiO2 thin film matrices: A Raman and electron
    microscopic study,” Jpn. J. Appl. Phys. 30, 687–694 (1991).
    [108] X. Deng, J. D. Weil, and M. Krishnamurthy, “Temperature dependence
    of SiGe coherent island formation on Si (100): Anomalous
    reentrant behavior,” Phys. Rev. Lett. 80, 4721–4724 (1998).
    [109] M. Gavelle, E. M. Bazizi, E. Scheid, P. F. Fazzini, F. Cristiano,
    C. Armand, W. Lerch, S. Paul, Y. Campidelli, and A. Halimaoui,
    “Detailed investigation of GeSi interdiffusion in the full range of
    Si 1−x Ge x (0 ≤ x ≤ 1) composition,” J. Appl. Phys. 104,
    113,524 (2008).

    QR CODE
    :::