跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊子頡
Zi-Jie Yang
論文名稱: 光學計算在生理指標之應用
Application of Optical Computing in Physiological Index
指導教授: 張榮森
Rong-Seng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: 光學疊紋機器學習
外文關鍵詞: Moiré, Machine Learning
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為建立一套量化生理指標的非侵入式量測系統,本文主要探討量測人體各部位的振動頻率。
    本實驗的架構及器材包含了投影機、攝影機、附有Matlab軟體之電腦,利用投影機在人體表面投射出指定寬度的Ronchi Ruling光柵,將人體的振動轉化為疊紋的亮暗變化,接著計算疊紋的灰階值變化並經由傅立葉轉換得到人體振動的頻譜圖。
    本實驗目前主要對手指進行多點量測,會得到不同位置的振幅變化圖和頻譜圖。受試者在兩種不同的情境下接受一樣的測試,而能透過頻譜圖加以分辨。


    The main purpose of this paper is to build a non-invasive optical measurement for quantizing the physiological index of human. This paper will be certain in tremor and vibration frequency of human hands.
    This system builds Moiré pattern by post-production, and calculate the frequencies on hands by Matlab. According to the value of Moiré pattern, we can transfer it to frequency domain so that we can quantize the tremor of hands.
    The study uses digital Moiré pattern to build a system for measuring tremor of hand. The system can digitize the tremor of hand and plot spectrogram by doing Fourier transform to grayscale of interested point. Doctors can judge efficacy of treatment by objective data and reduce misjudgments by patient oral discussion.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 xv 第一章 序論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 研究貢獻 2 1-4 論文架構 2 第二章 研究原理 3 2-1 Moiré疊紋之起源和概念 3 2-2 Ronchi Ruling光柵 4 2-3 疊紋干涉近似表示法 7 2-4 陰影疊紋法 9 2-5 疊紋表面與位移量測原理 11 2-5-1 疊紋3D地形圖 12 2-5-2 疊紋位移量測 12 2-6 疊紋簡化法 13 2-6-1 光源垂直光柵 13 2-6-2 攝影機垂直光柵 14 2-7 傅立葉轉換 15 2-7-1 離散時間傅立葉轉換 15 2-7-2 快速傅立葉轉換 16 第三章 研究設備 18 3-1 系統架構 18 3-2 軟/硬體設備介紹 19 3-2-1 投影機 19 3-2-2 網路攝影機 20 3-2-3 Matlab 23 3-2-4 光柵 24 3-2-5 校正儀 24 第四章 實驗與結果分析 27 4-1 系統設置介紹 27 4-1-1 實驗設計 27 4-1-2 使用者介面 27 4-1-3 處理流程 29 4-2 使用流程 33 4-3 量測結果 35 4-3-1 受試者之手指振幅變化圖 36 4-3-2 實驗受試者之手指頻譜圖 57 4-3-3 帕金森氏症病患量測結果 78 4-3-4 結果分析 85 第五章 結論與未來展望 88 5-1 研究結論 88 5-2 未來展望 88 參考文獻 90

    〔1〕 Kafri and I. Glatt,”The physics of Moire Metrology”, New York, Wiley, c1990.
    〔2〕 Daniel Post , Bongtae Han , Peter G. Ifju, “Moiré Methods for Engineering and Science - Moiré Interferometry and Shadow Moiré”, Topics in Applied Physics, Volume 77, p.151, 2000.
    〔3〕 B. Han, D. Post, “Moiré interferometry for engineering mechanics: current practices and future developments” , The Journal of Strain Analysis for Engineering Design, Vol.36. p.101-117,(2001)
    〔4〕 Lord Rayleigh, “On the manufacture and theory of diffraction grating”, Phil. Mag. Series4, pp. 81-93, 1874.
    〔5〕 V. Ronchi, N. Zanidelli, Attualita Scintifiche, Bologna, No.37, Chap.9, 1925.
    〔6〕 C. V. Raman and S. K. Datta, Trans. Opt. Soc., Vol.27, p.51, 1925- 1926.
    〔7〕 S. K. Datta, Trans. Opt. Soc. Vol.28, p.214, 1926-1927.
    〔8〕 G. A. Brewer and R. B. Glassco, J. Aero. Sci.,Vol.9, No.1, 1941.
    〔9〕 R. Weller and B. M. Shephard, Proc. Soc. Experimental Stress Analysis, Vol.6, p.35,1948.
    〔10〕 R. Weller and B.M. Shepard, “Displacement Measurements by Mechanical Interferometry”, Proc. SESA, 6(1), p35-38, 1948.
    〔11〕 J. Guild, “The Interference System of Crossed Diffraction Gratings: Theory of Moirè Fringes”, Oxford at the Clarendon Press, 1956.
    〔12〕 H. Takasaki, “Moiré Topography”, Applied Optics, Vol.9, No.6, pp.1467~1472, 1970.
    〔13〕 R. P. Khetan, “Theory and Applications of Projection Moiré Method”, State University of New York at Stony Brook, Ph.D. Dissertation, 1975.
    〔14〕 M. Ldesawa, T. Yatagai, T. Sorma, “Scanning Moiré Method and Automatic Measurement of 3-D Shapes”, Applied Optics, Vol.16, No.8, pp.2125 -2162, 1977.
    〔15〕 F. P. Chiang, “Moiré Methods of Strain Analysis”, Experimental Mechanics, pp. 290~308, 1979.
    〔16〕 Voloshin,A. S. ,Burger,C. P., Rowlands, R.E. , “Composites Analysis, by Fractional Moiré Fringe System”, J .Comp. Mat. 19, p513-524,1985.
    〔17〕 Katherine Creath ,Phase-shifting speckle interferometry, Applied Optics, Vol.24, No.18, September 1985.
    〔18〕 J. L. Sullivan , “Phase—Stepped Fractional Moiré”, Experimental Mechanics, Volume31, p373- 381, 1991.
    〔19〕 B. R.Frieden, “Some Statistical Properties of Median Window” , Proc. Soc. Photo-Opt. Instrum. Vol.373, No.219, 1981.
    〔20〕 J. E.A. Liao and A.S. Voloshin, “Enhancement of the Shadow-Moiré Method Through Digital Image Processing”, Experimental Mechanics , Volume33, p59-63, 1993.
    〔21〕 Yinyan Wang and Patrick Hassell, “Measurement of Thermally Induced Warpage of BGA Packages/Substrates Using Phase Stepping Shadow Moire”, Electronic Packaging Technology Conference, 1997. Proceedings of the 1997 1st, pp.283-289, 8-10 Oct, 1997.
    〔22〕 Yarom Polsky, Walter Sutherlin, “A Comparison of PWB Warpage Due to Simulated Infrared and Wave Soldering Processes”, IEEE Transactions On Electronics Packaging Manufacturing, Vol.23, No.3, pp.191~199, July, 2000.
    〔23〕 G. A. Brewer and R. B. Glassco, J. Aero. Sci.,Vol.9, No.1, 1941.
    〔24〕 R. Weller and B. M. Shephard, Proc. Soc. Experimental Stress Analysis, Vol. 6, 35, 1948.
    〔25〕 H. Takasaki, “Moiré Topography”, Applied Optics, Vol.9, No.6, pp.1467~1472, 1970.
    〔26〕 Inokuchi Y, et al. “Evaluation of Facial Palsy by Moiré Topography”, Proc SPIE, 1429, p.258-265, 1995.
    〔27〕 Ivnitsky A, Voloshin A. “Measurement of the Face’s Topography by Digitally Digitally Enhanced Shadow Moiré”, Proc SPIE, 1395 p.1043-1049, 1996.

    QR CODE
    :::