跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王鏦釉
Tsung-Yu Wang
論文名稱: 柴式法生長8 吋晶體之內部缺陷數值模擬
指導教授: 陳志臣
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 柴式長晶缺陷單晶矽
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶矽是生產半導體元件中基板的主要材料,為了在製造過程中達到高質量且低缺陷的矽晶體,但由於缺陷在製造過程中是無可避免的,如何製造低缺陷的矽晶體是相當重要的課題。其中在柴式法(Czochralski method,Cz)生長單晶矽過程中,本質點缺陷會在固液界面不斷重組與產生,因此透過改變晶轉與拉速等變因控制長晶過程中產生的缺陷以達到較高品質的晶體。但由於製造過程中所耗費的時間以及材料成本等因素,如何找到合適的晶轉與拉速等變因相當困難,因此需要通過數值模擬觀察改變晶轉與拉速等變因對晶體內部的影響,以此找到合適的製程參數。
    本研究以 CGSim 軟體模擬柴式長晶法(CZ)生長 8 吋單晶矽製程中,其中晶體高度生長至500mm,探討不同晶體旋轉及拉速下晶體內的氧濃度變化,並觀察摻氧以及摻氮對晶體內點缺陷分布的影響,藉此了解不同的操作條件對缺陷密度的影響。研究發現使用逆向晶轉的晶體內缺陷密度低於使用同向晶轉的晶體內缺陷密度,缺陷密度種類包含空缺型缺陷以及氧沉澱物;提升拉速對於空缺型密度也會跟著提升。


    Monocrystalline silicon is the main material used in the production of substrates for semiconductor devices. In order to achieve high quality silicon crystals with low defects in the manufacturing process, it is important to produce silicon crystals with low defects because defects are inevitable in the manufacturing process. In the Czochralski method (Cz) of single crystal silicon growth, intrinsic point defects are continuously recombined and generated at the melt/crystal interface, so the defects generated during the crystal growth process are controlled by changing the crystal rotation and pulling rate to achieve higher quality crystals. However, due to the time and material cost involved in the fabrication process, it is difficult to find the appropriate variables of crystal rotation and pulling rate, so numerical simulations are needed to observe the effect of changing the variables of crystal rotation and pulling rate on the interior of the crystal to find the appropriate process parameters.
    In this study, CGSim software was used to simulate the growth of 8-inch single-crystal silicon by the CZ crystal method (CZ), in which the crystal height was grown to 500 mm to investigate the variation of oxygen concentration in the crystal under different crystal rotation and pulling speed, and to observe the effect of doping with oxygen and nitrogen on the distribution of point defects in the crystal, so as to understand the effect of different operating conditions on the defect density. It was found that the defect density in the crystals with reverse crystal rotation was lower than that in the crystals with isotropic crystal rotation, and the types of defects included vacancy-type defects and oxygen precipitates.

    摘要 I 目錄 III 表目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 研究背景 1 1.2 本質點缺陷(intrinsic point defects) 1 1.3生長CZ晶體內的物種反應 2 1.4 缺陷成核反應 4 1-5 文獻回顧 6 1-6 研究動機 7 第二章 物理模型與系統描述 9 2-1 物理系統 9 2-2 基本假設 9 2-3 CZ矽晶中氧的傳輸路徑 10 2-4 數學模型與邊界條件 10 第三章 研究方法 22 3-1 數值方法 22 3-1-1 氧雜質濃度求解 22 3-2 網格測試 23 3-3 收斂性測試 23 第四章 結果與討論 28 4-1 改變晶轉對流場之影響 28 4-2 改變晶轉對晶體內氧濃度之影響 29 4-3 改變晶轉對晶體內缺陷之影響 30 4-4 空缺型密度與空缺型濃度之間的關係 31 4-5改變拉速對流場之影響 32 4-6 改變拉速對固液界面V/G值之影響 32 4-7 改變拉速對缺陷之影響 32 第五章 結論與未來方向 50 5.1 結論 50 參考文獻 51

    [1] Voronkov, V. V. , " The mechanism of swirl defects formation in silicon. ", Journal of Crystal Growth, 1982, 59.3: 625-643.
    [2] Voronkov, V. V., & Falster, " Intrinsic point defects and impurities in silicon crystal growth. ", Journal of The Electrochemical Society, 2002, 149.3: G167.
    [3] Voronkov, V. V., & Falster, R. " The effect of nitrogen on void formation in Czochralski silicon crystals. " Journal of crystal growth, 2005, 273.3-4: 412-423.
    [4] Kashchiev, D. , "Nucleation: Basic Theory with Applications ", 2000. Butterworth Growth Theories for Precipitation. Acta Materialia, 2008, 56.9: 2119-2132.
    [5] Roksnoer, P. J.; VAN DEN BOOM, M. M. B. , "Microdefects in a non-striated distribution in floating-zone silicon crystals. ", Journal of Crystal Growth, 1981, 53.3: 563-573.
    [6] K Kulkarni, Milind S.; Voronkov, Vladimir V. , "Simplified two-dimensional quantification of the grown-in microdefect distributions in Czochralski grown silicon crystals. " , Journal of The Electrochemical Society, 2005, 152.10: G781.
    [7] K Kulkarni, Milind S. , "Defect dynamics in the presence of oxygen in growing Czochralski silicon crystals. ", Journal of crystal growth, 2007, 303.2: 438-448.
    [8] K Kulkarni, Milind S. ,"Defect dynamics in the presence of nitrogen in growing Czochralski silicon crystals. ", Journal of Crystal Growth, 2008, 310(2): 324-335.
    [9] Liu, Xin; GAO, Bing; KAKIMOTO, Koichi. ," Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth. ", Journal of Crystal Growth, 2015, 417: 58-64.
    [10] 鄧應揚,「多晶矽太陽能電池晶碇故畫生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國97年。
    [11] 林明獻:「矽晶圓半導體材料技術(第五版)」,全華圖書,民國一零八年
    [12] Smirnov, A. D., & Kalaev, V. V. , "Development of oxygen transport model in Czochralski growth of silicon crystals. " , Journal of Crystal Growth, 2008, 310.12: 2970-2976.
    [13] Yang, Deren; QUE, Duanlin. , "Nitrogen in Czochralski silicon. ", In: 2001 6th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No. 01EX443). IEEE, 2001. p. 255-260.
    [14] Sinno, Talid, et al. , "On the Dynamics of the Oxidation-Induced Stacking-Fault Ring in as-grown Czochralski silicon crystals. ", Applied physics letters, 1997, 70.17: 2250-2252.
    [15] K Kulkarni, Milind S. "Lateral incorporation of vacancies in Czochralski silicon crystals ". Journal of crystal growth, 2008, 310.13: 3183-3191.

    QR CODE
    :::