| 研究生: |
黃中煜 Chung-Yu Hwang |
|---|---|
| 論文名稱: |
質型螢光離子感應與「取代基對等」 |
| 指導教授: |
楊吉水
Jye-Shane Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 取代基對等 、螢光感應 、皇冠醚 |
| 外文關鍵詞: | internal, fluor, crown ether, sensor |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文根據ICT原理設計並合成出數種本質型螢光離子感應器1-Py、1-Ph、1-PM和1-FM,結構以皇冠醚monoaza-15-crown-5
(A15C5) 為接受器,而發光團以二苯乙烯為主體。為了比較,我們亦探討已知化合物1-Me。
在乙腈中,系列一化合物 (1-Py、1-Ph、1-PM、1-FM和1-Me)對Ca2+離子錯合後有螢光位移現象,其中化合物1-Py之螢光光譜呈藍位移,而化合物1-FM則無明顯位移,其餘三個感應分子皆為紅位移;至於此五個感應分子之吸收光譜改變則較單純,皆為藍位移。儘管如此,此五個感應分子與Ca2+離子錯合後的光譜行為,包括放射與吸收光譜、螢光量子產率和螢光生命期皆與化合物系列三 (3-Py、3-Ph、3-PM、3-FM和3-Me) 相似;而在二氯甲烷中,化合物系列一與Na+離子錯合後,其光譜行為亦相似於化合物系列三。此結果顯示 A15C5/Ca2+在乙腈中和A15C5/Na+在二氯甲烷中的電子效應相當於一個氯取代基。既然放射與吸收螢光皆與氯取代之化合物系列三相似,顯示感應錯合物在激發態時,金屬離子仍存在於接受器之內;此對等關係除對新型螢光感應器的設計有幫助外,亦可藉由對氯取代之化合物之探討研究,能讓我們對此類超分子之電子結構與感應機制有更深入了解。
Abstract
In this thesis, we report the design and synthesis of four new ICT-based intrinsic fluoroionophores 1-Py, 1-Ph, 1-PM, and 1-FM, which use monoaza-15-crown-5 (A15C5) as the ionophore and aminostilbene as the fluorophore. For comparison, we also investigated the known compound 1-Me.
Except for 1-FM, compound series number one (1-Py, 1-Ph, 1-PM, 1-FM, and 1-Me) display fluorescence shifts in response to Ca2+ in acetonitrile. The fluorescence of compound 1-Py is blue-shifted, whereas it is red-shifted for the other three compounds. On the other hand, all five compounds display blue shift in their absorption spectra. Although the spectral responses are distinct, the resulting complexes display a spectroscopic behavior, including the absorption and emission shape and energy, fluorescence quantum yield, and fluorescence lifetime, similar to the corresponding compound series number three (3-Py, 3-Ph, 3-PM, 3-FM, and 3-Me). In dichloromethane, the complexation between compound series number one and Na+ also results in a photochemical behavior similar to the compound series number three. Such correlations indicate that A15C5/Ca2+ in acetonitrile and A15C5/Na+ in dichloromethane have an electronic effect nearly equivalent to a chloro substituent. Since the similarities exist in both absorption and emission spectra in all five fluoroionophores, this suggests that the excited-state decoordination reaction does not occur in all cases. The observed correlations might serve as a useful guide for future probe design. Furthermore, we can gain insights into the electronic structures of the complexes (supramolecular entities) based on the studies of their correlated molecules.
1. Lehn, J.-M. Angew. Chem. 1988, 27, 89.
2. Robertson, J. M. Nature 1953, 755.
3. Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule Recogmition, ACS Symposium series, 1992, 538, 26.
4. Bourson, J.; Valeur, B. J. Phys. Chem. 1989, 93,3871.
5. Fery-Forgues, S.; Le Bris, M. T.; Guette, J. P.; Valeur, B. J. Phys. Chem., 1988, 92, 6233.
6. Rurack, K. Spectrochimica Acta Part A , 2001, 57, 2161.
7. Bryan, A. J.; De Silva, A. P.; De Silva, S. A.; Rupasinghe, R. A. D. D.; Sandanayake, K. R. A. S. Biosensor. 1989, 4, 169.
8. Bissell, R. A.; De Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 21, 187.
9. Bissell, R. A.; De Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; McCoy, C.P.; Sandanayake, K. R. A. S. Top. Curr. Chem. 1993, 168, 223.
10. De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
11. Letard, J.-F.; Lapouyade, R. J. Phys. Chem. 1995, 99, 15709.
12. Letard, J.-F.; Lapouyade, R.; Rettig, W. Chem. Phys. Lett. 1994, 222,209.
13. Rurack, K.; Sczepan, M.; Spieles, M.; Ute, R.G.; Rettig, W. Chem. Phys. Lett. 2000, 320, 87.
14. Moylan, C.R.; Motoda, Midori, Sugimoto, M.; Sakaki, S. J. Phys. Chem. A. 1999, 103, 5551.
15. Letard, J.-F.; Lapouyade, R.; Rettig, W. Chem. Phys. Lett. 1994, 222,209.
16. S. Delmon. J.-F. Letard, R. LaPouyade, R. Mathevet, G. Jonusauskas, C. Rulliere, New J. Chem. 1996, 20, 861.
17. Görner, H.; Kuhn, H. J. Adv. Photochem. 1995, 19, 117.
18. Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E.J. Photochem. Photobio. A. Chem. 1997, 111, 87.
19. (a) Lewis, F. D.; Kalgutker, R. S. J. Phys. Chem. A. 2001, 105, 285. (b) Il’ichev, Y. V. ; Kühnle, W.; Zachariasse, K. A. Chem. Phys. 1996, 211, 441. (c) Lapouyade, R.; Kuhn, A.; Letard, J.-F.; Retting, W. Chem. Phys. Lett. 1993, 208, 48. (d) Gruen, H.; Görner, H. J. Phys. Chem. 1989, 93, 7144.
20. Jonker, S. A.; Dijk, V.; Goubitz, K.; Reiss, C. A.; Schuddeboom, W.; Verhoeven, J. W. Cryst. Liq. Cryst., 1990, 183, 273.
21. Rurack, K.; Sczepan, M.; Spieles, M.; Ute, R.-U.; Rettig, W. Chem. Phys. Lett. 2000, 320, 87.
22. Suzann89-456+1e, F.-F.; Bourson, J.; Dallery, L.; Valeur, B. New J. Chem. 1990, 14, 617.
23.Lee, B. H.; Marvel, C. S. Polym. Sci. Chem. Ed. 1982, 20, 393.
24. Gegiou, D.; Muzkat, K. A.; Fischer, E. J. Am. Chem. Soc. 1968, 90, 3907.
25. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
26. Dix, J. P.; Voegtle, F. Chem. Ber. 1980, 113, 457.
27. Dippy et al.; J.Soc.Chem.Ind.London, 1937, 56, 396 .
28. Lokhande, S. B.; Rangnekar, D. W.; J. Chem. Sect. B, 1986, 25, 485.
29. Jceax; J.Chem.Eng.Data.1976, 21, 125.
30. Tadros et al. J.Chem.Soc. 1954, 2351.
31. Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience: London, 1970.