| 研究生: |
張家維 Chia-Wei Chang |
|---|---|
| 論文名稱: |
兩階段移動式顆粒床之研究 The Study of Two-Stage Moving Granular Bed Filter |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 移動式顆粒床 、除塵技術 、兩階段 、發電 、過濾效率 |
| 外文關鍵詞: | Moving granular bed filter, Dust removal, Two-stage, Power plant, Collection efficiency |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在煤和生物質的氣化或燃燒過程裏,發展中的移動式顆粒床過濾器(MGBF)之應用在其間扮演著重要角色。這些過濾器具有相當大的開發潛力,可應用於先進發電系統的高溫氣體淨化。然而移動式顆粒床過濾器中的缺陷設計,可能會導致停滯區的產生並進而引起嚴重的問題,例如堵塞。因此為了解決停滯區的問題,在文獻中提出裝設於過
濾器中的一流動校正單元為解決辦法,然而其中大多數研究為使用單一尺寸顆粒的過濾器濾材。本論文提出了一種新的方法,該方法為在一個過濾器裝置中導入了兩種顆粒大小的過濾器濾材,稱為兩階段過濾模式。依據學者Johanson 提出質量流率過濾器的設計理論為基礎,設計使用兩種尺寸顆粒的過濾器濾材來減少停滯區。基於過濾器中不同的幾何設計,在本研究中六種二維實驗配置中評估移動式顆粒床中的十字流流動模式,其中兩種過濾濾材由粗石英砂和細石英砂顆粒組成。研究發現,過濾器濾材的流動方式受過濾器內部幾何形狀的影響,且兩階段過濾器的最佳設計可在165 分鐘內完成並消除停滯區。
在三維除塵技術實驗方面,延續採用二維兩階段移動式顆粒床過濾器之幾何設計,並使用粗、細兩種過濾濾材。在室溫下,進行使用粗石英砂顆粒和細石英砂顆粒兩種濾材下對各種質量流率的研究,並測試壓降、粉塵捕集效率和粉塵的粒徑分佈。此外,使用質量消耗比率來反映實際濾材的質量流量。而質量消耗比率可影響壓降、粉塵捕集效
率和粉塵的粒徑分佈。研究指出兩階段移動式顆粒床過濾器可捕集大於1.775 μm 的粉塵,其中在粗石英砂顆粒的質量流率設定為330 g / min、細石英砂顆粒的質量流率設定為1100 g / min 下,可獲得最佳的粉塵捕集效率和粉塵的粒徑分佈,本研究的設計同時有助於發電廠高溫除塵系統的開發。
The application of moving granular bed filters (MGBFs) has been growing, which play an important role in the gasification or combustion of coal and biomass. Furthermore, these filters have great potential to be developed for the high-temperature gas cleanup of advanced power generation systems. However, owing to defective designs in MGBFs, the generation of a stagnant zone can result from serious problems such as plugging. Therefore, the researches of flow-corrective inserts (FCI) for filter vessels have been studied to minimize these issues. This study developed a novel approach dubbed as two-stage filtration mode, which combined two sizes of granules in a single filter vessel. Based on the design method of a mass flow vessel by Johanson's theory, the reducing of a stagnant zone could be satisfied by using two sizes of filtering granules. The flow field in a two-dimensional and cross-flow MGBF was evaluated in six test configurations based on different geometric designs in a filter. The two sizes of filtering granules consisted of coarse and fine silica granules. The findings revealed that the flow field of filtering granules was influenced by the vessel geometry. In a two-dimensional test, the proposed system for two-stage mode minimized the stagnant zone in 165 minutes.
We proposed a dust removal solution for the three-dimensional cold testing that used a two-stage MGBF with coarse and fine filtering granules. Using varied mass flow rates for coarse and fine granules at room temperature, the pressure drop, collection efficiency, and dust particulate size distributions were studied. Furthermore, the mass consumption ratio was utilized to evaluate the true mass flow. The pressure drop, collection efficiency, and dust particulate size distributions were all affected by the mass consumption ratio. Particulates larger than 1.775 μm were removed by the filter. Our findings revealed that a mass flow of 330 g/min for coarse granules and a mass flow of 1100 g/min for fine granules provided optimal collection efficiency and particulate size distribution. The proposed design may be useful in the construction of high-temperature systems in power plants.
[1] S.N. Sax, K. Zu, and J.E. Goodman, “Air pollution and lung cancer in Europe.” Lancet
Oncol., Vol 14, 2013, pp. e439-e440.
[2] Y.S. Chen, S.S. Hsiau, S.C. Lai, Y.P. Chyou, H.Y. Li, and C.J. Hsu, “Filtration of dust
particulates with a moving granular bed filter.” J. Hazard. Mater., Vol 171, 2009, pp. 987-
994.
[3] I. Al-Naiema, A.D. Estillore, I.A. Mudunkotuwa, V.H. Grassian, and E.A. Stone, “Impacts
of co-firing biomass on emissions of particulate matter to the atmosphere.” Fuel, Vol 162,
2015, pp. 111-120.
[4] G.K. Artun, N. Polat, O.D., Yay, Ö.Ö. Üzmez, A. Ari, G.T. Tuygun, T. Elbir, H. Altug ̌, Y.
Dumanog ̌lu, T. Dög ̌erog ̌lu, A. Dawood, M. Odabasi, and E.O. Gaga, “An integrative
approach for determination of air pollution and its health effects in a coal fired power plant
area by passive sampling.” Atmos. Environ., Vol 150, 2017, pp. 331-345.
[5] J.P.K. Seville, “Rigid ceramic filters for hot gas cleaning.” KONA Powder Part J., Vol 11,
1993, pp. 41-56.
[6] Z. Li, L. Chen, S. Liu, H. Ma, L. Wang, C. An, and R. Zhang, “Characterization of PAHs
and PCBs in fly ashes of eighteen coal-fired power plants.” Aerosol Air Qual. Res., Vol 16,
2016, pp. 3175-3186.
[7] A. Baba, G. Gurdal, and F. Sengunalp, “Leaching characteristics of fly ash from fluidized
bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey).” Fuel Process.
Technol., Vol 91, 2010, pp. 1073-1080.
[8] S.C. Saxena, R.F. Henry, and W.F. Podolski, “Particulate removal from high–temperature,
high–pressure combustion gases.” Prog. Energy Combust. Sci., Vol 11, 1985, pp. 193-251.
[9] R. Zevenhoven, and P. Kilpinen, “Control of pollutants in flue gases and fuel gases.”
Bibliography
54
Helsinki University of Technology, Finland, 2001.
[10] H. Kamiya, Y. Sekiya, and M. Horio, “Thermal stress fracture of rigid ceramic filter due
to char combustion in collected dust layer on filter surface.” Powder Technol., Vol 115,
2001, pp. 139-145.
[11] G. Xiao, X. Wang, J. Zhang, M. Ni, X. Gao, Z. Luo, and K. Cen, “Granular bed filter: A
promising technology for hot gas clean-up.” Powder Technol., Vol 244, 2013, pp. 93-99.
[12] S. Mizukami, M. Wakabayashi, and H. Murata, “Interaction between pressure drop of gas
and flow of medium in a moving granular bed filter.” Part. Sci. Technol., Vol 5, 1987, pp.
131-142.
[13] Y. Jung, and C. Tien, “New correlations for predicting the effect of deposit on collection
efficiency and pressure drop in granular filtration.” J. Aerosol Sci., Vol 22, 1991, pp. 187-
200.
[14] Y. Jung, and C. Tien, “Increase in collector efficiency due to deposition in polydispersed
granular filtration–an experimental study.” J. Aerosol Sci., Vol 23, 1992, pp. 525-537.
[15] R.C. Brown, H. Shi, G. Colver, and S.C. Soo, “Similitude study of a moving bed granular
filter.” Powder Technol., Vol 138, 2003, pp. 201-210.
[16] D. Stanghelle, T. Slungaard, and O.K. Sønjua, “Granular bed filtration of high temperature
biomass gasification gas.” J. Hazard. Mater., Vol 144, 2007, pp. 668-672.
[17] J.T. Kuo, J. Smid, S.S. Hsiau, C.Y. Wang, and C.S. Chou, “Stagnant zones in granular
moving bed filter for flue gas cleanup.” Filtr. Sep., Vol 35, 1998, pp. 529-534.
[18] Ives, K.J. (Eds.) The scientific basis of filtration. Springer Netherlands, 1975.
[19] A.W. Jenike, “Storage and flow of solids.” Bulletin No. 123 of the Utah Engineering
Experiment Station, Vol 53, Utah Univ., Salt Lake City, USA, 1964.
[20] P.C. Arnold, A.G. McLean, and A.W. Roberts, Bulk Solids: Storage, Flow and Handling.
Australia: 1978.
[21] A.W. Roberts, 100 years of Janssen. In Proceedings of the 3rd European Symposium:
Bibliography
55
Storage and Flow of Particulate Solids, Nurnberg, 21-23 March, 1995, pp. 7-44.
[22] J.T. Kuo, J. Smid, S.S. Hsiau, and C.S. Chou, “Granular bed filter technology.” Proc. Natl.
Sci. Counc. Repub. China. Part A, Vol 22, 1998, pp. 17-34.
[23] S.S. Hsiau, J. Smid, C.Y. Wang, J.T. Kuo, and C.S. Chou, “Velocity profiles of granules in
moving bed filters.” Chem. Eng. Sci., Vol 54, 1999, pp. 293-301.
[24] S.S. Hsiau, J. Smid, H.H. Tsai, J.T. Kuo, and C.S. Chou, “Flow patterns and velocity fields
of granular in Dorfan Impingo filters for gas cleanup.” Chem. Eng. Sci., Vol 55, 2000, pp.
4481-4494.
[25] S.S. Hsiau, J. Smid, F.H. Tsai, J.T. Kuo, and C.S. Chou, “Velocities in moving granular
bed filter.” Powder Technol., Vol 114, 2001, pp. 205-212.
[26] C.S. Chou, C.C. Tseng, S.S. Hsiau, H.H. Tsai, J. Smid, and J.T. Kuo, “Numerical
simulation of flow patterns of disks in Dorfan Impingo filter for gas cleanup.” Proc. Natl.
Sci. Counc. Repub. China B, Vol 24, 2000, pp. 226-237.
[27] C.S. Chou, C.Y. Tseng, J. Smid, J.T. Kuo, and S.S. Hsiau, “Numerical simulation of flow
patterns of disks in the asymmetric louvered–wall moving granular filter bed.” Powder
Technol., Vol 110, 2000, pp. 239-245.
[28] S.S. Hsiau, J. Smid, S.A. Tsai, C.C. Tzeng, and Y.J. Yu, “Flow of filter granules in moving
granular beds with louvers and sublouvers.” Chem. Eng. Process., Vol 47, 2008, pp. 2084-
2097.
[29] J. Smid, S.S. Hsiau, S.A. Tsai, C.C. Tzeng, and Y.P. Chyou, “Study on gravity flow of
granules in beds supported by louver–sublouver system.” Adv. Powder Technol., Vol 20,
2009, pp. 127-138.
[30] Y.P. Chyou, J. Smid, S.S. Hsiau, C.W. Chang, and T.C. Huang, “Compact two–stage
granular moving bed apparatus.” US Patent, Application Number: 13/087066, 2011.
[31] G.H. Yang, and J.H. Zhou, “Experimental study on a new dual-layer granular bed filter for
removing particulates.” J. China Univ. Mining Tech., Vol 17, 2007, pp. 201-204.
Bibliography
56
[32] J. Smid, S.S. Hsiau, Y.P. Chyou, T.C. Huang, and T.C. Liu, “Flow patterns and velocity
fields in two–dimensional thin slice panel with flow–corrective insert.” Adv. Powder
Technol., Vol 23, 2012, pp. 548-557.
[33] B.M. Wenzel, C. Porciúncula, N.R. Marcilio, H.B. Menegolla, G.M. Dornemann, M.
Godinho, C.B. Martins, “Filtration of dust in an intermittent moving granular bed filter:
Performance and modeling.” Sep. Purif. Technol., Vol 133, 2014, pp. 108-119.
[34] I.A. El-Hedok, L. Whitmer, R.C. Brown, “The influence of granular flow rate on the
performance of a moving bed granular filter.” Powder Technol., Vol 214, 2011, pp. 69-76.
[35] Y.S. Chen, and S.S. Hsiau, “Cake formation and growth in cake filtration.” Powder
Technol., Vol 192, 2009, pp. 217-224.
[36] L. Böehm, and S. Jordan, “On the filtration of sodium oxide aerosols by multilayer sand
bed filters.” J. Aerosol. Sci., Vol 7, 1976, pp. 311-318.
[37] I.B. Stechkina, and V.A. Kirsh, “Optimization of parameters of filters in a multistage
system of fine gas filtration.” Theor. Found. Chem. Eng., Vol 37, 2003, pp. 218-225.
[38] G.M.M. Ochieng, F.A.O. Otieno, T.P.M. Ogada, S.M. Shitote, and D.M. Menzwa,
“Performance of multistage filtration using different filter media against conventional
water treatment systems.” Water SA, Vol 30, 2004, pp. 361-367.
[39] A. Charvet, L. Wingert, N.B. Monnier, S. Pacault, F. Fournier, D. Bemer, and D. Thomas,
“Multi-staged granular beds applied to the filtration of ultrafine particles: An optimization
of collector diameters.” Powder Technol., Vol 342, 2019, pp. 341-347.
[40] Y.S. Yu, Y.B. Tao, Z. Ma, and Y.L. He, “Experimental study and optimization on filtration
and fluid flow performance of a granular bed filter.” Powder Technol., Vol 333, 2018, pp.
449-457.
[41] K.Y. Shi, G.H. Yang, S. Huang, S.R. Tian, Z.F. Hu, and B.L. Huang, “Study on filtering
characteristics of aerosol particulates in a powder-grain dual-layer granular bed.” Powder
Technol., Vol 272, 2015, pp. 54-63.
Bibliography
57
[42] J.L. Chen, X.F. Li, X.L. Huai, and J.Z. Zhou, “Collection efficiency in a three-dimensional
randomly arranged dual-layer granular bed filter.” Particuology, Vol 49, 2020, pp. 88-94.
[43] C.W. Chang, S.S. Hsiau, Y.S. Chen, Y.P. Chyou, and J. Smid, “Study of flow patterns in
two-stage mode of moving granular bed filter.” Aerosol. Air Qual. Res., Vol 17, 2017, pp.
2691-2690.
[44] Y.S. Chen, Y.P. Chyou, and S.C. Li, “Hot gas clean-up technology of dust particulates with
a moving granular bed filter.” Appl. Therm. Eng., Vol 74, 2015, pp. 146-155.
[45] J.R. Johanson, “The use of flow–corrective inserts in bins.” J. Eng. Ind., Vol 88, 1966, pp.
224-230.
[46] J.R. Johanson, and W.K. Kleysteuber, “Flow corrective inserts in bins.” Chem. Eng. Prog.,
Vol 62, 1966, pp. 79-83.
[47] J.R. Johanson, “The placement of inserts to correct flow in bins.” Powder Technol., Vol 1,
1967/68, pp. 328-333.
[48] C.A.P. Zevenhoven, “Particle Charging and Granular Bed Filtration for High Temperature
Application.” Ph.D. Thesis, Delft University, Delft, The Netherlands, 1992.
[49] E. Gal, G. Tardos, and R. Pfeffer, “A study of inertial effects in granular bed filtration.”
AIChE J., Vol 31, 1985, pp. 1093-1104.
[50] K.W. Lee, “Maximum penetration of aerosol particles in granular bed filters.” J. Aerosol.
Sci., Vol 12, 1981, pp. 79-87.
[51] D.C. Cicero, R.A. Dennis, D.W. Geiling, and D.K. Schmidt, “Hot-gas cleanup for coal
based gas turbines.” Mech. Eng., Vol 116, 1994, pp. 70-75.