跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張家齊
Chia-chi Chang
論文名稱: 單石化平面光波光路之導波模態共振濾波器
Monolithic Integration of GMR Filter and Rib Waveguide on SOI-based Platform
指導教授: 伍茂仁
Mount-learn Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 平面光波光路導波模態共振濾波器波導
外文關鍵詞: guided-mode resonance (GMR), waveguide, planar lightwave circuits, SOI
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在既有PLC上的濾波器架構中,我們可以發現具「單石積體化」的濾波器結構已成為研究主流,早期由NTT等所提出之利用薄膜濾波器的外插法,用混成構裝技術封裝至PLC機板上,在特性及成本上皆不具量產之可行性;也因此,目前尚無該架構的商品化應用。而具單石積體化的PLC架構中,為了能實現高密度堆積,布拉格式波導光柵或凹面型光柵由於作用區會高達數毫米,無法善盡PLC之微型化的優勢,在研究上或商品化上較不受青睞。而與波導光柵相近的Fabry-Perot共振腔濾波器則是目前相當受到矚目的結構,主因在於該種濾波器,可以經由適當的設計,就達到帶通、帶拒等濾波特性,但若要達到一定程度的消光比、或夠窄的頻帶寬度等濾波需求,則需要增加前/後的反射鏡組;然而,其中所引入的散射損耗和繞射損耗則相當可觀。
    在此論文中將提出利用具導波模態共振特性的次波長光柵作為PLC上之波導光學濾波器,成為可實際應用之WDM系統之濾波元件。引入GMR光柵成為一種在PLC基板上的新式濾波器將將具有下述特點:工作區域距離甚小、具單石積體化特性以及具彈性的多種濾波特性。然而設計使用的GMR結構僅有光柵部分並無波導的部分,在此光柵將同時扮演著光柵與波導的角色。對於1310 和1550 nm波長做分波作用,並利用FDTD的模擬運算,可以得到1550 nm波長有著高穿透特性,其穿透效率高達94 %。而1310 nm波長而有高反射的現象,其反射效率高達96 %。
    在我們所設計使用的光柵濾波器其波長頻譜圖可以得知在1310 和1550 nm區域中能量衰減0.5 dB的波長帶寬各有 60 nm 和40 nm的帶阻以及帶通頻寬對於應用在光通訊上有很大的好處。
    材料方面選用 SOI晶圓來做為系統的材料基板,因為其二氧化矽層之絕緣性佳,目前大都應用在製作互補性金氧半導體元件,而矽與二氧化矽的光學折射率各為3.4811與1.450,所以SOI 的上層矽包夾在兩個低折射率介質中,因此SOI本身就形成平板波導的條件。選用SOI 來製作光學元件有機會與CMOS積體電路做通訊元件的相關整合。最後藉由半導體製程可以實際製作出GMR光柵濾波器與波導的整合元件可行性。


    Wavelength-division multiplexer (WDM) is one of the most important technologies in the lightwave network systems, such as Fiber-to-the-home (FTTH) application [2-5]. Thin film filter (TFF) has been widely used in the passive optical network (PON) architecture, and its optical sub-assembly (OSA) is generally adopted as the TO-CAN [2-3] and planar lightwave circuits (PLC) type [4-5]. TFF based on TO-CAN OSA is the con-ventional type. However, it suffers from hard packaging tasks, whose alignment tolerance between LD, TFF, SMF, or ball lens should be achieved micro-scaled precision within such macro-sized device [2-3]. PLC-typed OSA can be further miniaturized and straightly become a platform of assembling drive IC, opto-electronic devices [4-5]. Suntae Jung et al. have developed hybrid integration technology via inserting a TFF in the trench with an adhesive . However, for reducing coupling efficiency between waveguide facets, the width of trench is only 20 μm. It is still a big task to insert such tiny film within this small trench.
    In this paper, a monolithic integrated-WDM via sub-wavelength si grating filter, which is replaced the hybrid-integrated TFF, is proposed on SOI-based PLCs. As shown in Fig. 1-7, this Si-grating filter structure can be monolithically fabricated on the integrated PLC, and the separated length between waveguide facets can also be narrowed to sub-wavelength scaled by e-beam lithography process, which maintains the waveguide coupling efficiency.
    In design consideration, this sub-wavelength si grating is formed as a guided-mode resonance (GMR) filter [16]. As satisfying the phase-matched condition, lightwave of the resonant wavelength would be extremely reflective, and the others would be trans-mitted. This sub-wavelength Si grating is very different from conventional free-space GMR filter because the incident lightwave emitted from rib waveguide is of finite-size and Gaussian-like profile, which is away from the free-space condition [16]. Fortunately,not only the sub-wavelength-scaled distance between waveguide facets maintains a finite-sized, however, planar wave-front of the waveguide field, but also the large dielectric constants of silicon, both of which make the resonant mode indeed locally exist in this si grating.
    In this work, the 1310/1550 nm WDM filter via this monolithically integrated device is demonstrated numerically and experimentally. The stop- and pass-band of 1310 and 1550 nm, respectively, are broad of 60 and 40 nm within 0.5 dB variations. The fabrication process is also dis-cussed.

    中文摘要 ….……………………………....……………………………..i 英文摘要 ….……………………………....………………………….....iii 致謝 ….……….. ........................................................................................ v 目錄 ….……….. ....................................................................................... vi 圖目錄 ….……….. ................................................................................. viii 表目錄 ….……….. .................................................................................. xii 第一章 緒論 ............................................................................................. 1 1-1 前言 ......................................................................................... 1 1-2 分波多工器之光學濾波元件簡介 ......................................... 2 1-3 導波模態共振濾波器簡介 ..................................................... 8 1-4 研究動機 ............................................................................... 11 第二章 導波模態共振濾波器理論與設計 ........................................... 16 2-1 導波模態共振之理論 ........................................................... 16 2-2 嚴格耦合光波分析之理論 ................................................... 19 2-3 非對稱型導波模態共振濾波器之設計 ............................... 23 2-3.1 非對稱型導波模態共振濾波器工作原理…………23 2-3.2 非對稱型導波模態共振濾波器設計與模擬……....25 2-3.3 非對稱型導波模態共振濾波器模擬環境…………27 第三章 波導結合非對稱型導波模態共振濾波器之設計 ................... 31 3-1 SOI 基板之選用 ................................................................... 31 3-2 波導理論與設計 ................................................................... 33 3-3 有限時域差分法之理論與結構模擬分析 .......................... 39 3-3.1 有限時域差分法之理論….…..………………….…39 3-3.2 波導結合非對稱型導波模態共振濾波器之模擬分 析……………………………………………..….…41 第四章 波導結合非對稱型導波模態共振濾波器元件之製作 ........... 46 4-1 波導之製程….…..…….…………………………..……….46 4-2 非對稱型導波模態共振濾波器之製程….…..……..…..…49 4-3 波導結合非對稱型導波模態共振濾波器之製作流 程….….……….………………………………………...….51 4-4 元件製作之問題 ... …………………………………………55 第五章 特殊對稱型導波模態共振濾波器……………………...……57 5-1 特殊對稱型導波模態共振濾波器之設計………………...57 5-1.1 嚴格耦合光波分析法之模擬分析…………………57 5-1.2 有限時域差分法之模擬分析………………………61 5-2 特殊對稱型波導模態共振濾波器元件之製作.….….......66 第六章 結論與未來展望……………………………………………...70 參考文獻 ………………………………………………...……………72

    [1]S.E. Miller, “Integrated optics: an introduction,”Bell System Technol. J., 48, 2059 (1969)
    [2]M. Tamura, Taya-cho, Sakae-ku, and Yokohama, “Low Cost passive and active devices for FTTH systems, ” Proc. SPIE., Vol. 6014 , 60140K-1 (2005)
    [3]H. J. Yoon, H. W. Cho, Y. U. Cho, and K. D. Kim, “Bi-directional small form pluggable optical transceiver using an integrated WDM optical subassembly,” Proc. SPIE., Vol. 6352, 63521O-1 (2006)
    [4]H. Imam, J. P. Rasmussen, and M. Pearson, “Integrated bi-directional transceivers for Access applications based on a cost-effective PLC hybridized platform,” Proc. SPIE, Vol. 6124, 612412 (2006)
    [5]T. Hashimoto, T. Kurosaki, M. Yanagisawa, Y. Suzuki, Y. Akahori, Y. Inoue,Y. Tohmori, K.Kato, Y. Yamada, N. Ishihara, and K. Kato, “A 1.3/1.55-μm Wavelength-Division Multiplexing Optical ModuleUsing a Planar Lightwave Circuit for Full Duplex Operation,” J. Lightwave Technol, VOL. 18, NO.11, 1541-1547(2000)
    [6]K.Y. Kim, J.H. Song, S.Y. Kim, “Planar lightwave circuit having optical filter,” US Patent: 7,324,727
    [7]T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” J. Lightwave Technol, VOL. 19, NO.12, 1938-1942 ( 2001)
    [8]
    M. LoCascio, C.T. Ballinger, D.P. Landry, “Planar lightwave Fabry-Perot filter.” US Patent: 7,200,302
    [9]A. Balakrishnan, S. Bidnyk, M. Pearson, “Two-stage optical by-directional transceiver,” US Patent: 7,209,612
    [10]R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902)
    [11]A. Hessel ,and A. A. Oliner, “A new theory of Wood’s anomalies on optical grating,” Appl. Opt. 10, 1275 (1965)
    [12]R. Magnusson and S. S. Wang,“New principle for optical filters,” Appl. Phys. Lett., vol. 61, pp.1022-1024 (1992)
    [13]S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,”Appl. Opt., vol. 32, no. 14, pp.2606-2613 (1993)
    [14]D. L. Brundrett, E. N. Flytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in fuided-mode resonant subwavelength fratings at normal incidence,” J. Opt. Soc. Am. A, Vol 17. 7, 1221 (1997)
    [15]D. W. Peters, S. A. Kemme, and G.R. Hadley, “Effect of finite grating, waveguide width, and end-facet feometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A, Vol 21. 6, 981(2004)
    [16]
    C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. C hang, “Flattened Broadband Notch Filters Using Guided-Mode Resonance Associated With Asymmetric Binary Gratings,” IEEE Photon. Technol. Lett., VOL. 18, NO.24, 2572 (2006)
    [17]
    S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layerdiffraction gratings,” J. Opt. Soc. Am. A, vol. 18, 1470 (1990)
    [18]
    R. R. Boye, and R. K. Kostuk, “Investigation of the effect if finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649 (2000)
    [19]S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-mode condition for semiconductor rib wavegude with large cross section,” J. Lightwave Technol, VOL. 16, NO.10, 1851 ( 1998)
    [20]
    A. Tavlove, “The finite-difference time-domain method, ” Computational Electrodynamics (1995)
    [21]C.M. Wang, J.Y. Chang, C.L. Hsu, C.C. Lee and J.C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” IEEE ELECTRONICS LETT., Vol. 40 ,No. 21, (2004)

    QR CODE
    :::