| 研究生: |
娜琪法 Sri Azizah Nazhifah |
|---|---|
| 論文名稱: |
利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化 Using Remote Sensing Imageries to Observe Coseismic Vertical Motion Associated with 2004 Indian Ocean Earthquake |
| 指導教授: |
曾國欣 博士
Tseng, Kuo-Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | NAO.99b 、改良常態差異水體指標 、近岸高程 、相對海水面變化 |
| 外文關鍵詞: | NAO.99b, MNDWI, Coastal DEM, Relative Sea Level Change |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錫默盧島(Simeuleu island)為2004年印度洋地震中最接近震央的島嶼之一,在地震發生過後,導致許多國家的土地產生嚴重的垂直變化,其中包含了印度、泰國以及斯里蘭卡等多個國家。在這項研究中,我們利用光學影像並且搭配了一套流程來研究錫默盧島陸地的垂直變化。由於在地震過後珊瑚礁抬升改變了沿岸地形,因此我們收集了多張Landsat系列之光學影像來檢測海岸抬升或是下沉的現象。首先會先收集地震前以及地震後的Landsat影像,並將影像進行全色態加強之前置處理,將綠色波段以及中紅外波段的解析度提高。接著運用改良常態差異水體指標 (MNDWI)來判釋水體與非水體的像素分佈,再計算每一個影像網格中水所出現的機率並使用NAO.99b潮汐模型取得平均較高高潮位 (MHHW)以及平均較低低潮位 (MLLW)之兩條水位線做為高度參考,並運用高度參考值將淹水機率轉換為實際高程資訊。最後將地震前與地震後的兩段時間段作為我們觀察地區變化的時間序列,從結果中顯示位於該島西北部的沿岸地形抬升了幾10公分,而位於東南部的沿岸地形則是下沈約34公分,此外在其他特定區域的沿岸地形也有40公分左右的明顯抬升。
Simeuleu island is one of the islands closest to the epicenter of 2004 Indian Ocean Earthquake. This event is known to cause severe land vertical motion in several countries, such as India, Thailand and Sri Langka. This event had changed the coastal topography that can be seen from the uplift of coral reef. In this study, we aim to investigate land vertical motion in Simeuleu island by employing optical remote sensing imageries and a tide model. A series of Landsat images are collected to detect coastal uplift/subsidence. Landsat surface reflectance (Level 2) of pre-event and post-event are collected to conduct pan-sharpening for increasing spatial resolution of green and mid-infrared band. Next, we calculate the modified normalized difference water index (MNDWI) to identify water and non-water for all images and sum up those images to make an inundation chance. Furthermore, we run the NAO.99b tide model to obtain the mean higher high water (MHHW) and mean lower low water (MLLW) as height references. Finally, the inundation chance with the MHHW and MLLW is linearly inverted to obtain a DEM. To observe the changed region, we divide the image set into two epochs before and after the earthquake. Our result shows that the island experiences uplift in the Alafan at about few tens of centimeters while in the southeast experience subsidence about 34 cm. Some particular spots have obviously stronger uplift at around 40 cm.
REFERENCES
1. Merrifield, M. A., Firing, Y. L., Aarup, T., et al.: Tide gage observations of the Indian Ocean tsunami, December 26, 2004. 2005. Geophysical. Research Letters, 32, L09603, doi:10.1029/2005GL022610.
2. Saatcioglu, M., Ghobarah, A., & Nistor, I. 2005. Effects of December 26, 2004 Sumatra Earthquake and Tsunami on Physical Infrastructure. ISET Journal of Earthquake Technology, 42, pp. 79-94.
3. Natawidjaja, D. H., K. Sieh, S. N. Ward, H. Cheng, R. L. Edwards, J. Galetzka, and B. W. Suwargadi (2004), Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia, J. Geophys. Res., 109, B04306, doi:10.1029/2003JB002398.
4. Meltzner, A. J., Sieh, K., Abrams, M., Agnew, D. C., Hudnut, K. W., Avouac, J. P., & Natawidjaja,D. H. 2006. Uplift and Subsidence Associated with the Great Aceh‐Andaman Earthquake of 2004.Journal of Geophysical Research: Solid Earth, 111(B2).
5. Jaffe, E, B., Borrero, C, J., Prasetya, S, G., Peters, R., McAdoo, B., Gelfenbaum, G., Morton, R., Ruggiero, P., Higman, Bretwood., Dengler, L., Hidayat, R, M., Kingsley, E., Kongko, W., Lukijant., Moore, A., Titov, V., Yulianto, E. 2006. Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami. Easthquake Spectra, 22, pp. 105 – 135.
6. Liew, C, S and He, J. 2008. Uplift of a Coral island in Andaman Sea Due to the 2004 Sumatra Earthquake Measured Using Remote Sensing Reflectance of Water. IEEE Geoscience and Remote Sensing Letters, 5, pp. 701-704.
7. Einarsson, I., Hoechner, A, Wang, R., & Kusche, J. 2010. Gravity Changes due to the Sumatra-Andaman and Nias Earthquakes as detected by the GRACE satellites: a reexamination. Geophysical Journal International, 183, pp. 733-747.
8. Chlieh, M., Avouac, J-P., Hjorleifsdottir, V., Song, T-R. A., Chan, J., Sieh, K., Sladen, A., Herbert, H., Prawi rodirdjo, L., Bock, Y., & Galetzka, J. 2007. Coseismic Slip and Afterslip of the Great (Mw9.15) Sumatra-Andaman Earthquake of 2004. Bull. Seism. Soc. Am., Vol. 97, No 1A, pp. 152-173.
9. Prawirodirdjo, L., McCaffrey, R., Chadwell, D, C., Bock, Y., & Subarya, C. 2010. Geodetic Observations of an Earthquake Cycle at the Sumatra Subduction Zone: Role of Interseismic Strain Segmentation. Journal of Geophysical Research. 115. pp. 1-15.
10. Fundamentals of Remote Sensing its Application in GIS. http://giswin.geo.tsukuba.ac.jp/sis/tutorial/koko/remotesensing/FundamentalRemoteSensing.pdf.
11. Hudson, R, D and Hudson W, J. 1975. The Military Applications of Remote Sensing by Infrared. Proceeding of the IEEE, 63, pp. 104 – 128.
12. Chini, M., Bignami, C., Stramondo, S., & Pierdicca, N. 2008. Uplift and Subsidence due to 26 December 2004 Indonesia Earthquake Detected by SAR data. International Journal of Remote Sensing, 29, pp. 3891-3910.
13. Tronin, A, A. 2010. Satellite Remote Sensing in Seismology. A review. Remote Sensing, 2, pp 124 -150.
14. Al-khudhairy, D, H, A., Caravaggi, I., & Giada, S. 2005. Structural Damage Assessments from Ikonos Data Using Change Detection, Object-Oriented Segmnetation, and Classification Techniques. Photogrammetric Engineering & Remote Sensing, 71, pp 825-837.
15. Rejaie, A., Shinozuka, M., & Hon, M, ASCE. 2004. Reconnaissance of Golcuk 1999 Earthquake Damage Using Satellite Images. Jounal of Aerospace Engineering, 17, pp 20-25.
16. Li, P & Tao, X. 2005. Quantitative Earthquake Damage Detection from Changes in Remote Sensing Images- A case study. IEEE, pp 1026 – 1027.
17. Fu, B., Ninomiya, Y., Lei, X., Toda, S., & Awata, Y. 2004. Mapping Active Fault Associated with the 2003 Mw 6.6 Bam (SE Iran) Earthquake with ASTER 3D Images. Remote Sensing of Environment, 92, pp 153 – 157.
18. Fu, B & Lin, A. 2010. Spatial Distribution of the Surface Rupture Zone Associated with the 2001 Ms 8.1 Central Kunlun Earthquake, Northern Tibet, Revealed by Satellite Remote Sensing Data. International Journal of Remote Sensing, 24, pp 2191-2198.
19. Toda, S., Lin, J., Meghraoui, M., & Stein, S, R. 2008. 12 May 2008 M = 7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems. Geophysical Research Letters, 35, pp 1-6.
20. Peltzer, G., Crampè, F., & King, G. 1999. Evidence of Nonlinear Elasticity of The Crust from the Mw 7.6 Manyi (Tibet) Earthquake. Science, 286, pp 272 – 275.
21. Puymbroeck, V, N., Michel, R., Binet, R., Avouac, J, P., & Taboury, J. 2000. Measuring Earthquake from Optical Satellites Images. Applied Optics, 39, pp 3486 – 3494.
22. Mueller, M., Segl, K., Heiden, U., & Kaufmann., H. 2006. Potential of High Resolution Satellite Data in the Context of Vulnerability of Buildings. Natural Hazards, 38, pp 247 – 258.
23. Ashat, A & Ardiansyah, F. 2012. Igniting the Ring of Fire: A Vision for Developing Indonesia’s Geothermal Power: Part III The Pacific Ring of Fire, ISBN: 978 – 979 – 1461 – 29 – 0, pp.151 – 153.
24. Condie, K. C. 1997. Fourth edition: Plate Tectonics and Crustal Evolution. ISBN 0 7506 3386 7, pp. 6-8.
25. Taylor, F. W., C. Frohlich, J. Lecolle, and M. Strecker.1987. Analysis of partially emerged corals and reef terraces in the central Vanuatu Arc: Comparison of contemporary coseismic and nonseismic with Quaternary vertical movements. Journal. Geophysical Research, 92, 4905-4933.
26. Bilham, R., Engdahl, E.R., Feldl, N., and Satyabala, S. P. 2005 Partial and complete rupture of the Indo-Andaman plate boundary 1847-2004. Seismol. Res. Lett., 76, 299-311.
27. The Statistics of Simeuleu Regency 2016. http://simeuluekab.go.id/uploads/ SKS_2016.pdf. Last Accesed [19 July 2018].
28. Natawidjaja, H, D., Sieh, K, Chlieh, M., Galetzka, J., Suwargadi, W, B., Cheng, H., Edwards, L, R., Avouac, J, P., and Ward, N, S. 2006. Source Parameters of the Great Sumatra Megathrust Earthquakes of 1797 and 1833 inferred fromcoral microatolls. J. Geophysical. Res, 111, B06403, doi:10.1029/2005JB004025
29. Mason, M. 2005. Islanders Remembered Stories of 1907 Tsunami. https://seattletimes.com/nation-world/islanders-remembered-stories-of-1907-tsunami/. Last Accessed [ 5 July 2018].
30. Smith, L. 2009. Remote-Sensing Technologies. https://gislounge.com/remote-sensing-technologies/. Last Accessed [ 5 July 2018].
31. Gahalaut, V. K., et al. (2008), GPS measurements of postseismic deformation in the Andaman-Nicobar region following the giant 2004 Sumatra-Andaman earthquake, J. Geophys. Res., 113, doi:10.1029/2007JB005511.
32. Ronchetti, G and Sona, G. 2018. Pan-sharpening Methods applied on Sentinel-2 Imagery for Mapping Inland Water Bodies. Geophysical Research, 20. EGU2018-7760.
33. Fundamental of Pan Sharpening. http://pro.arcgis.com/en/pro-app/help/data/imagery/fundamentals-of-pan-sharpening-pro.htm.
34. Rundquist, d., lawson, m., queen, l. And cerveny, r., 1987, The Relationship between the Timing of Summer-Season Rainfall Events and Lake-Surface Area. Water Resources Bulletin, 23, pp. 493-508.
35. Xu, H. 2005. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, pp 3025 – 3033.
36. Physical Basics. http://seos-project.eu/modules/remotesensing/remotesensing-c01-p05.html.
37. Siegmund, A & Menz, G.2005. Fernes nah gebracht - Satelliten- und Luftbildeinsatz zur Analyse von Umweltveränderungen im Geographieunterricht In: Geographie und Schule, 154: 7.
38. McFeeters, K, S. 1996. The use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 17, pp. 1425-1432.
39. Tseng, K. H., Kuo, C. Y., Lin, T. H., Huang, Z. C., Lin, Y. C., Liao, W. H., & Chen, C. F. 2017. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries. ISPRS Journal of Photogrammetry and Remote Sensing, 131, pp. 92-103.
40. Matsumoto, K., T. Takanezawa, and M. Ooe. 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, Journal of Oceanography, 56, pp. 567-581.
41. Zachariasen, J., Sieh, K., Taylor, F. W., Edwards, R. L., and Hantoro, W. S., 1999. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls, J. Geophys. Res, 104, pp. 895-919.
42. Jaffe, E, B., Borrero, C, J., Prasetya, S, G., Peters, R., McAdoo, B., Gelfenbaum, G., Morton, R., Ruggiero, P., Higman, Bretwood., Dengler, L., Hidayat, R, M., Kingsley, E., Kongko, W., Lukijant., Moore, A., Titov, V., Yulianto, E. 2006. Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami. Easthquake Spectra, 22, pp. 105 – 135.
43. Coastal Changes in Simeuleu island, caused by the 2004 earthquake. http://www.gsi.go.jp/cais/topics-topic041226-simeulue-e.html.
44. SENTINEL-2 User Handbook. https://sentinel.esa.int/documents/247904/ 685211/Sentinel-2_User_Handbook.
45. SENTINEL-1 User Guide Overview. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview